Multi-Frequency Trade*

Nicolas Crouzet, Ian Dew-Becker, and Charles G. Nathanson

August 30, 2017

Abstract

We develop a noisy rational expectations model of financial trade featuring investors who acquire information and trade on variation in fundamentals at a range of different frequencies. While all trade happens on date 0, the model generates predictions for how investors’ exposures to fundamentals will subsequently vary over time. In the model, restricting traders from following strategies that yield exposures that vary at particular frequencies lowers the efficiency of prices at those frequencies but has no meaningful effect elsewhere; if anything, it increases efficiency. In a particular equilibrium of the model, investors specialize into following strategies that resemble frequency-specific investment. Investors following the different strategies coexist, trade with each other, and make money from each other. While not fully dynamically realistic, the model is highly tractable and heuristically matches numerous basic features of financial markets: investors endogenously specialize into strategies distinguished by frequency; volume is disproportionally driven by high-frequency strategies; and the portfolio holdings of informed investors forecast returns at the same frequencies as those at which they trade.

Investors in financial markets follow many different strategies, including value investing, technical analysis, macro strategies, and algorithmic trading. These strategies differ in two salient ways. First, they require investors to learn about different aspects of asset prices. Market-makers or algorithmic traders care more about the high-frequency movements of prices, while value investing puts more emphasis on their slow-moving features. These investors all understand that their information sets may not overlap, and yet they trade with each other, presumably making some money in the process. Second, these strategies differ in the frequency at which they require investors to trade and the rate at which they turn over their positions.

Solving for a market equilibrium involves first solving each investor’s portfolio choice problem taking prices as given, and then looking for a set of equilibrium prices. It is well known, though, that in fully dynamic problems even the first step of solving the portfolio choice problem is tractable only in very special cases. Solutions are available when dynamic effects are eliminated (e.g. with

* Crouzet: Northwestern University. Dew-Becker: Northwestern University and NBER. Nathanson: Northwestern University. We appreciate helpful comments from Stijn Van Nieuwerburgh, Ioanid Rosu, and seminar participants at Northwestern and the Adam Smith conference.
myopic investors or fundamentals that are i.i.d. over time) and when an underlying state follows an AR(1) process (e.g. Wang (1993, 1994), He and Wang (1995), and Wachter (2002)).

This paper does not provide a new method for solving the dynamic investment problem; instead, it eliminates most dynamic effects by modeling all trade as happening on a single date. Where the paper innovates is in its analysis of time-series dynamics and information acquisition. The model allows fully general serial correlations in fundamentals, and investors are free to choose signal processes about fundamentals that have only limited constraints. Our contribution lies in formalizing the dynamics and information acquisition analytically at a high level of generality (also without restricting to symmetric strategies) and then showing that even studying trade on a single date in such a framework yields a number of realistic empirical predictions, though still at a relatively heuristic level. So whereas past work has studied models with trade that occurs explicitly at many dates but under extremely tight restrictions on time series dynamics, we study a model with trade on a single date but with very weakly constrained dynamics.

More specifically, we study a date-0 equilibrium model of trade in a futures market. There is a single fundamentals process, and a continuum of investors who meet on date 0 to trade futures contracts on the fundamental. An example of the fundamentals process is the spot price of oil: investors are able to acquire information that tells them about the future path of oil prices, allowing them to potentially earn profits on the forward contracts. As is common elsewhere, in order to grease the wheels of the market, we assume that investors trade against an exogenous flow of demand for forward contracts that fluctuates stochastically over time.

Our basic result is that the investment problem and market equilibrium are fully and most naturally solvable in terms of frequencies. Moreover, there exists a natural (though not necessarily unique) equilibrium in which individual investors focus on specific frequencies of the fundamentals. Some investors learn about low-frequency aspects of oil prices in the sense that they get a signal about their average path over, say, a period of decades, while others learn about higher-frequency behavior, receiving a signal about how oil prices vary from day to day or month to month. This occurs despite the fact that the learning technology is fully general, and in no way tilts investors towards frequency specialization ex-ante.

Given attention allocation, investors’ equilibrium positions (their exposures to the fundamental on different dates, coming from their holdings of futures in the model) fluctuate at the frequency at which they receive signals. That is, investors who learn about long-run fundamentals hold positions in forward contracts that fluctuate slowly across maturities, whereas those who do high-frequency research have positions that vary at high frequencies. So we have a model in which people choose

\footnote{Spiegel (1998), Watanabe (2008), and Banerjee (2011) study dynamic models with overlapping generatinos that admit solutions. In the context of a Kyle (1985) model with risk-neutral traders, See also Seiler and Traub (2008), who study the existence of equilibria for general auto-regressive processes, using frequency domain techniques.}

\footnote{The major advantage of our particular information and trading structure is that it allows us to take a long-horizon dynamic model and solve it as a series of parallel scalar problems. In particular, solving our model is only marginally more difficult than solving a standard single-period/single asset noisy rational expectations model – it reduces to a parallel set of such equilibria. The paper thus has useful methodological contributions for analyzing models of trade over time.}
to learn about high- or low-frequency aspects of fundamentals, and that learning causes them to endogenously hold high- or low-frequency positions. While there is other research on investors who trade at different frequencies, that work typically endows investors with investment horizons that differ exogenously; here, that choice is entirely endogenous.\(^3\)

This paper studies one particular difference between investors’ strategies: the type of information the acquire about fundamentals. Since all trade happens on a single date, there is no way for investors to condition on the past history of prices, so the model is not well suited for studying purely price-based strategies like momentum trading.\(^4\)

What is particularly interesting about the equilibrium that we obtain is that it is not the case that the informed investors trade only with the exogenous liquidity demand. In fact, high- and low-frequency traders trade with each other. The simple reason is that a high-frequency investor cannot distinguish uninformative demand shocks from the orders of informed low-frequency investors (and vice versa).

Again, the predictions of the model are heuristic in the sense that, rather than describing patterns of trade over time, they describe the exposures that investors acquire. The model has a number of predictions of this type for observable features of financial markets. First, as we have already discussed, it predicts that there are traders who can be distinguished by the frequencies at which their asset holdings change over time, and they do research about fundamentals at the same frequencies. So we obtain endogenous high- and low-frequency investors with a specific prediction for how research aligns with trade.

The model also matches salient facts about differences in volume across investors. High-frequency investors account for a fraction of aggregate volume that is out of proportion to their fraction of total asset holdings. An interesting implication of that result is that incorporating trading costs into the model can have substantial effects on optimal information acquisition strategies, driving investors away from high-frequency strategies.\(^5\)

The model is fundamentally about differences in information across investors. People obtain information in order to make money, and so their asset holdings in general should forecast returns. We see that both in the model and in the data.\(^6\) But different investors’ holdings do not forecast returns in the same way. The frequency at which an investor’s portfolio holdings forecasts returns is the same as the frequency at which they invest: high-frequency investors’ positions forecast returns

\(^3\)See, e.g., Amihud and Mendelson (1986), who assume that investors are forced to sell after random periods of time; Hopenhayn and Werner (1996), who assume that investors vary in their rates of pure time preference, and Defusco, Nathanson, and Zwick (2017) who assume that there are sets of investors who are exogenously forced to sell at deterministic horizons that vary across groups. Similar to us, Shleifer and Vishny (1990) study attention allocation across horizons, allowing investors to choose between short- and long-run investment opportunities.

\(^4\)See Farboodi and Veldkamp (2017) for an analysis of the choice of becoming informed about order flow versus fundamentals.

\(^5\)Gärleanu and Pedersen (2013) also discuss how high-frequency information is less valuable in the presence of trading costs, while Dávila and Parlato (2016) study in a related setting how trading costs can affect information acquisition, but without our focus on differences across frequencies.

\(^6\)See, e.g., the literature on the predictive power of mutual fund and institutional investor asset holdings for future returns, such as Carhart (1997) and Yan and Zhang (2009), among many others.
at very short horizons, while buy-and-hold investors’ portfolios forecast returns over much longer
periods.

The idea that an investors’ asset holdings should forecast returns over a period related to how
long those assets will be held is perhaps not surprising. Studies of the holdings of mutual funds
and other institutional investors typically examine returns over a period of perhaps 3–12 months. At
the other extreme, Brogaard, Hendershott, and Riordan (2014) show that the holdings of high-
frequency traders (as defined by NASDAQ) forecast returns over periods of 1–5 seconds – a horizon
7 orders of magnitude smaller than a calendar quarter.

To empirically test our model, we provide novel evidence on the relationship between turnover
and asset return predictability. Using form 13F data on institutional asset holdings, we first show
that asset turnover within funds is highly persistent over time, suggesting that it is a salient
feature of investor strategies. Next, after confirming past results that institutional holdings predict
returns, we show that the predictive power of the holdings of high-turnover funds decays much more
quickly than those of low-frequency funds, consistent with the model.

Finally, we use the model to study the effects of a policy that restricts high-frequency invest-
ment strategies. Such a policy has the obvious effect of reducing the informativeness of prices at
high frequencies, but it has little or no effect at low frequencies. More concretely, the practical
implication of restricting high-frequency investment in the model is that while prices of futures
for any particular date contain less information than without the policy, moving averages of prices
across multiple dates remain almost equally informative about moving averages of dividends. So to
the extent that economic decisions are made based on an average of prices over time, rather than
a price at a single moment, the model implies that restricting high-frequency investment will not
reduce the information available for those decisions.

To summarize, we develop a model that matches a number of major features of trade in financial
markets: investors can be distinguished by the frequencies at which they trade; volume is accounted
for by high-frequency traders; and the holdings of investors forecast returns at horizons similar to
their holding periods. The model can then be used to analyze the effects of restricting trade at
specific frequencies.

This paper builds on a growing recent literature that tries to understand optimal information
acquisition in financial markets. The most important building blocks are the models of Van Nieu-
werburgh and Veldkamp (2010) and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016) in that
we use a highly similar information and market structure and build on their results on optimal
information acquisition (their reverse water-filling solution, in particular). Recent research has
used the rational expectations equilibrium framework in order to understand the consequences of

Yan and Zhang (2009), and Brogaard, Hendershott, and Riordan (2014) for studies of the behavior of institutional
investors.
8For other evidence on specialization by frequency, see Bayer et al. (2011), Giacoletti and Westrupp (2017), and
9Those papers themselves build critically on work by Grossman and Stiglitz (1980), Hellwig (1980), Diamond and
Verrecchia (1981), and Admati (1985) on rational expectations equilibria.
various limits on information gathering ability (e.g. Banerjee and Green (2015) and Dávila and Parlatore (2016)). Also closely related is recent research on complementarity and substitutability in information acquisition across asset markets (e.g. Cespa and Foucault (2014)), or across components of the payoff to specific assets (e.g. Goldstein and Yang (2015)).

Finally, our work is related to a small literature that studies the properties of asset returns and portfolio choice in the frequency domain including Bandi and Tamoni (2014), Chinco and Ye (2017), Chaudhuri and Lo (2016), and Dew-Becker and Giglio (2016).

The remainder of the paper is organized as follows. Section 1 describes the basic environment, and we solve for optimal information acquisition in section 2. Section 3 examines the implications of the model for the behavior of individual investors in a setting that features investors who specialize in trade at a particular frequency. Section 4 presents empirical evidence on the behavior of institutions consistent with our model of specialization. Finally, section 5 presents our key results on the effects of restrictions on high-frequency trade on return volatility and price efficiency at different frequencies, and section 6 concludes.

1 Asset market equilibrium

We begin by describing the basic market structure and the asset market equilibrium. This section introduces the description of investment strategies in terms of frequencies and shows how the frequency transformation makes multi-period investment a purely scalar problem.

1.1 Market structure

Time is denoted by \(t \in \{-1, 0, 1, \ldots, T\} \), with \(T \) even, and we will focus on cases in which \(T \) may be treated as large. There is a fundamentals process \(D_t \), on which investors trade forward contracts, with realizations on all dates except \(-1\) and \(0\). The time series process is stacked into a vector \(D \equiv [D_1, D_2, \ldots, D_T]' \) (variables without subscripts denote vectors) and is unconditionally distributed as

\[
D \sim N(0, \Sigma_D). \tag{1}
\]

The fundamentals process is assumed to be stationary, meaning that it has constant unconditional autocovariances. Stationarity implies that \(\Sigma_D \) is constant along its diagonals (it is Toeplitz), and we further assume that the eigenvalues of \(\Sigma_D \) are finite and bounded away from zero and that the autocovariances of \(D \) are absolutely summable.\(^{10}\)

There is a set of futures claims on realizations of the fundamental. There is an exogenous supply of the futures, \(Z \), which is unconditionally distributed as

\[
Z \sim N(0, \Sigma_Z). \tag{2}
\]

\(^{10}\)The analysis is similar if a transformation of \(D_t \) (e.g. its first difference) has the required properties. See appendix section A.
Z may be thought of as either exogenous liquidity demand or noise trading. The time series process for supply has the same restrictions as D.

A concrete example of a potential process D_t is the price of crude oil: oil prices follow some stochastic process and investors trade futures on oil at many maturities. D_t can also be interpreted as the dividend on a stock, in which case the futures would be claims on dividends on individual dates.

While the concept of a futures market on the fundamentals will be a useful analytic tool, we can also obviously price portfolios of futures. We model equity as a claim to the stream of fundamentals over time. Holding any given combination of futures claims on the fundamental is equivalent to holding futures contracts on equity claims. Our analysis of pricing will focus on futures as they will give the most direct analog to past work. When we discuss volume and trading costs, though, we will take advantage of the equity-based implementation.

1.2 Information structure

There is a unit mass of investors indexed by $i \in [0,1]$. The realization of the time series of fundamentals, $\{D_t\}_{t=1}^T$, can be thought of as a single draw from a multivariate normal distribution. Investors are able to acquire signals about that realization. The signals are a collection $\{Y_{i,t}\}_{t=1}^T$ observed on date 0 with

$$Y_{i,t} = D_t + \varepsilon_{i,t}, \varepsilon_i \sim N(0, \Sigma_i).$$

Through $Y_{i,t}$, investors can learn about fundamentals potentially arbitrarily far into the future. $\varepsilon_{i,t}$ is a stationary error process in the sense that $\text{cov}(\varepsilon_{i,t}, \varepsilon_{i,t+j})$ depends on j but not t (again, Σ_i is Toeplitz).\(^\dagger\)

The signal structure is meant to generate two important features in the model. First, obviously on any particular date agents can choose to learn about fundamentals on more than just a single date in the future – they can potentially get information about fundamentals in many different periods (e.g. next quarter versus over the next five years). Second, by restricting $\varepsilon_{i,t}$ to be “stationary”, we are forcing agents to choose a fixed policy for information. They build a machine (or a research department) that, rather than yielding information about only a single date, returns information about the entire fundamentals stream over time in a way that places no particular emphasis on any single date.

The key restriction here is that investors only acquire signals once, on date 0. We impose this assumption because it means that we only have to solve a single information updating problem (the change in beliefs from the unconditional distribution to that conditional on $Y_{i,t}$). The analytic tools we use are powerful for studying very general time series processes, but they are not well suited to analyzing repeated updating of information sets.

\(^\dagger\)We only allow investors to learn about fundamentals, as D is the only process that is directly payoff-relevant conditional on prices. Farboodi and Veldkamp (2017) study a model in which investors may also learn about order flow.
1.3 Trading

On date 0, there is a market for forward claims on fundamentals on all dates in the future. The price on date 0 of a claim to D_t is denoted P_t. Investor i’s demand for a date-t forward conditional on the set of prices and signals is denoted $Q_{i,t}$. For markets to clear, the net demand of the investors for the date-t forward must equal supply, Z_t:12

$$\int Q_{i,t} di = Z_t \text{ for all } t,$$

(4)

where $Q_{i,t}$ is the number of date-t forward claims agent i buys. Since we allow agents to condition demands on prices, we think of agents as submitting demand curves that condition on prices to a central auctioneer who then sets the price that clears the market.

1.4 Investment objective

We assume that investors have mean-variance utility over cumulative excess returns. Investor i’s objective is

$$U_{0,i} = \max_{\{Q_{i,t}\}} E_{0,i}\left[T^{-1} \sum_{t=1}^{T} Q_{i,t} (D_t - P_t) \right] - (\rho T)^{-1} Var_{0,i}\left[\sum_{t=1}^{T} Q_{i,t} (D_t - P_t) \right],$$

(5)

where $E_{0,i}$ is the expectation operator conditional on agent i’s date-0 information set, $\{P,Y_i\}$. $Var_{0,i}$ is the variance operator conditional on $\{P,Y_i\}$. ρ is risk-bearing capacity per unit of time.

We interpret the objective as representing a target that of an institutional investor. Rather than aiming to maximize the discounted sum of returns, as a person who consumes out of wealth might, the investors we study maximize a measure of their performance. The objective can be thought of as representing CARA or quadratic preferences over the sum of excess returns, so it would appear if a manager were paid on date T a fee proportional to total excess returns up to that time. Bhattacharya and Pfleiderer (1985) and Stoughton (1993) argue that a quadratic contract (which would induce mean-variance preferences) can appear optimally in delegated investment problems.

The important characteristic of (5) is that it yields a stationary problem in the sense that there is no discounting to make returns in some periods more important than others.

Finally, note that all investors have the same investment horizon. We show in appendix F that the investment horizon as defined here by T has no effect on information choices in the model – two investors with different T will be equally likely to be high- or low-frequency investors. The simplest way to confirm that fact is to simply note, when we obtain the equilibrium strategies, that T has no effect on the type of information that investors optimally obtain.

12It is also possible to assume that there is an exogenous downward-sloping supply curve of the fundamental that shifts stochastically over time; our results go through similarly. This case is treated as part of the analysis of appendix 6.
1.5 Equilibrium

Conditional on the information choices of the agents – that is, taking the set of Σ_i (which may differ across agents) as given – we study a standard asset market equilibrium.

Definition 1 An asset market equilibrium is a set of demand functions, $Q_i(P,Y_i)$, and a vector of prices, P, such that investors maximize utility, $U_{0,i}$, and all markets clear, $\int Q_i, d\theta = Z_t$ for all t.

The equilibrium concept is that Grossman and Stiglitz (1980), Hellwig (1980), Diamond and Verrecchia (1981), and Admati (1985). Investors submit demand curves for each futures contract to a Walrasian auctioneer who selects equilibrium prices to clear all markets.

The structure is in fact mathematically that of Admati (1985), who studies investment across a set of assets that might represent stocks in different companies, and the solution from that paper applies directly here. Here we are considering investment across a set of futures contracts that represent claims on some fundamentals process across different dates. We simply rotate the Admati (1985) structure from a cross-section to a time series.

1.6 Investment frequencies

This paper is fundamentally about the behavior of markets at different frequencies, so we need a rigorous concept of what frequencies are. We use the fact that fluctuations at different frequencies represent an (asymptotic) orthogonal decomposition of any stationary time series.

Define a set of $T \times 1$ vectors of cosines and sines at the fundamental frequencies $\omega_j = 2\pi j/T$ for $j \in \{0, 1, ..., \frac{T}{2}\}$

\[
c_j \equiv \sqrt{\frac{2}{T}} \left(\cos \left(2\pi j \frac{(t-1)}{T} \right) \right)_{t=1}^T
\]

\[
s_j \equiv \sqrt{\frac{2}{T}} \left(\sin \left(2\pi j \frac{(t-1)}{T} \right) \right)_{t=1}^T
\]

A cycle at frequency ω_j has an associated wavelength $2\pi/\omega_j$. $\omega_0 = 0$ thus corresponds to an infinite wavelength, or a permanent shock (a constant vector). ω_1 corresponds to a cycle that lasts as long as the sample – c_1 is a single cycle of a cosine. $\omega_{\frac{T}{2}} = \pi$, the highest frequency, corresponds to a cycle that lasts two periods, so that $c_{\frac{T}{2}}$ oscillates between $\pm \sqrt{\frac{2}{T}}$.

The frequency-domain counterpart to the vector of fundamentals, D, is then

\[
d = \Lambda' D
\]

where $\Lambda \equiv \begin{bmatrix} \frac{1}{\sqrt{2}} c_0, c_1, ..., c_{\frac{T}{2}-1}, \frac{1}{\sqrt{2}} c_{\frac{T}{2}}, s_1, s_2, ..., s_{\frac{T}{2}-1} \end{bmatrix}$.

We use the notation $d_j = c_j' D$ and $d_{j'} = s_{j'}' D$ to refer to fundamentals at particular frequencies. When the distinction is necessary, we use the notation j to refer to a frequency associated with a
cosine transform and \(j' \) to refer to one with a sine transform. In what follows, lower-case letters denote frequency-domain objects. Note that \(\Lambda \) is orthonormal with \(\Lambda' = \Lambda^{-1} \).

d\(j \) is the coefficient from a projection of \(D \) on \(c_j \). The columns of \(\Lambda \) represent an orthonormal basis, and the coefficients \(d_j \) then recover \(D \) from that basis.

To understand the above formulas, consider the simple example in which \(T = 2 \). In this case, the low-frequency component of dividends is \(d_0 = (D_1 + D_2)/\sqrt{2} \) and the high-frequency component of dividends is \(d_1 = (D_1 - D_2)/\sqrt{2} \). Investors trade the low-frequency component \(d_0 \) by buying an equal amount of the claims on \(D_1 \) and \(D_2 \). Conversely, investors trade the high-frequency component \(d_1 \) by buying offsetting amounts of the claims on \(D_1 \) and \(D_2 \).

Since \(d \) is a linear function of \(D \), it represents a vector of payoffs on portfolios of futures given by \(\Lambda \) – portfolios with weights on \(D_t \) that fluctuate over time as sines and cosines.

1.7 Orthogonalization

For our purposes, the key feature of \(\Lambda \) is that it approximately diagonalizes all Toeplitz matrices and thus orthogonalizes stationary time series.

Definition 2 For a stationary time series \(X_t \sim N(0, \Sigma_X) \) with autocovariances \(\sigma_{X,j} \equiv \text{cov}(X_t, X_{t-j}) \), \(f_X \) is the spectrum of \(X \) with elements \(f_{X,j} \), defined as

\[
f_{X,j} \equiv \sigma_{X,0} + 2 \sum_{s=1}^{T-1} \sigma_{X,j} \cos(\omega_j s) \tag{10}
\]

\[
f_X \equiv \left[f_{X,0}, f_{X,1}, \ldots, f_{X, \frac{T}{2}-1}, f_{X, \frac{T}{2}}, f_{X,1}, f_{X,2}, \ldots, f_{X, \frac{T}{2}-1} \right]'. \tag{11}
\]

Lemma 1 For a stationary time series \(X_t \),

\[
x \equiv \Lambda' X \Rightarrow N(0, \text{diag}(f_X)) \tag{12}
\]

where \(\Rightarrow \) denotes convergence in the sense that

\[
|\Lambda'\Sigma_X \Lambda - \text{diag}(f_X)| \leq c_X T^{-1/2} \tag{13}
\]

for a constant \(c_X \) and for all \(T \).\(^{15}\) \(\text{diag}(f_X) \) is a matrix with the vector \(f_X \) on its main diagonal and zero elsewhere.

\(^{13}\) One explicit example of this type of trade is the calendar spread future, through which investors buy the difference in the payoff of a future on different dates. See Cuny (2006) for more information on those contracts.

\(^{14}\) This is a textbook result that appears in many forms, e.g. Shumway and Stoffer (2011). Brillinger (1981) and Shao and Wu (2007) give similar statements under weaker conditions.

\(^{15}\) Two technical points may be noted here. First, as a technical matter, the spectrum \(f_X \) must be extended as \(T \) grows. A simple way to do that is to suppose that there is a true process for \(X \) with a spectrum that is a continuous function \(f_X \), and in any finite sample of length \(T \), there is then an associated spectrum \(f_{X,T} \) defined in (10). The second point is that the constant \(c_X \) is then a function of that true spectrum \(f_X \); the appendix elaborates on that fact.
Proof. This is a textbook result (e.g. Brockwell and Davis (1991)). See appendix B for a derivation specific to our case.

For any finite horizon, the matrix Λ does not exactly diagonalize the covariance matrix of D. But as T grows, the error induced by ignoring the off-diagonal elements of the covariance matrix of $\Lambda'D$ becomes negligible (it is of order $T^{-1/2}$), and x is well approximated as a vector of independent random variables.16 The spectrum of X, f_X, measures the variance in X coming from fluctuations at each frequency. It also represents an approximation to the eigenvalues of Σ_X.

To see why this lemma is useful, consider the vector of fundamentals in the frequency domain, $d = \Lambda'D$. Given that $D \sim N(0, \Sigma_D)$, where Σ_D is Toeplitz, we have

$$\Lambda'D = d \Rightarrow N(0, \text{diag}(f_D)).$$

Λ thus approximately diagonalizes the matrix Σ_D, meaning that the elements of d – the fluctuations in fundamentals at different frequencies (with both sines and cosines) are jointly asymptotically independent. Moreover, the same matrix Λ asymptotically diagonalizes the covariance matrix of \textit{any} stationary process. That result will allow us to massively simplify the study of investment over many horizons. It says that all stationary processes (asymptotically) have the same set of underlying orthogonal factors.

1.8 Market equilibrium in the frequency domain

The approximate diagonalization induced by Λ allows us to solve the model through a series of parallel scalar problems that can be easily analyzed by hand. Using the asymptotic approximation that d and z are independent across frequencies, we obtain the following frequency-by-frequency solution to the asset market equilibrium.

Solution 1 Under the approximations $d \sim N(0, \text{diag}(f_D))$ and $z \sim N(0, \text{diag}(f_Z))$, the prices of the frequency-specific portfolios, p_j, satisfy, for all j, j'

$$p_j = a_{1,j}d_j - a_{2,j}z_j$$ \hspace{1cm} (15)

$$a_{1,j} \equiv 1 - \frac{f_{D,j}^{-1}}{\left(\rho f_{avg,j}^{-1}\right)^2 f_{Z,j}^{-1} + f_{avg,j}^{-1} + f_{D,j}^{-1}}$$ \hspace{1cm} (16)

$$a_{2,j} \equiv \frac{a_{1,j}}{\rho f_{avg,j}^{-1}}$$ \hspace{1cm} (17)

where $f_{avg,j}^{-1} \equiv \int_i f_{i,j}^{-1} di$ \hspace{1cm} (18)

where p_j, d_j, and z_j represent the frequency-j components of prices, fundamentals, and supply, respectively. f_i is the spectrum of the matrix Σ_i. See appendix C for the derivation.

16For all the stationary processes studied in the paper, we assume that the autocovariances are summable in the sense that $\sum_{i=1}^{\infty} |j\sigma_{X,j}|$ is finite (which holds for finite-order stationary ARMA processes, for example).
The price of the frequency-j portfolio depends only on fundamentals and supply at that frequency. As usual, the informativeness of prices, through $a_{1,j}$, is increasing in the precision of the signals that investors obtain, while the impact of supply on prices is decreasing in signal precision and risk tolerance. The frequency domain analog to the usual demand function is

$$q_{i,j} = \rho \frac{E[d_j - p_j | y_{i,j}, p_j]}{\text{Var}[d_j - p_j | y_{i,j}, p_j]}.$$ \hspace{1cm} (19)$$

These solutions for the prices and demands are the standard results for scalar markets. What is novel here is that the choice problem refers to exposures to a time series of fundamentals across dates. p_j is the price of a portfolio whose exposure to fundamentals fluctuates over time at frequency $2\pi j/T$. Both prices and demands at frequency j depend only on signals and supply at frequency j—the problem is completely separable across frequencies.

The appendix shows that the frequency domain solution provides a close approximation to the true solution in the time domain. Specifically, the true time domain solution from Admati (1985) (with no approximations) can be written as

$$P = A_1 D - A_2 Z$$ \hspace{1cm} (20)$$

for a pair of matrices A_1 and A_2 defined in the appendix that are complicated matrix functions of Σ_Z, Σ_D, and the precisions of the signals agents obtain.

Proposition 1 The difference between solution 1 and the exact Admati (1985) solution is small in the sense that

$$|A_1 - \Lambda \text{diag}(a_1) \Lambda'| \leq c_1 T^{-1/2}$$ \hspace{1cm} (21)$$

$$|A_2 - \Lambda \text{diag}(a_2) \Lambda'| \leq c_2 T^{-1/2}$$ \hspace{1cm} (22)$$

for constants c_1 and c_2, where $|\cdot|$ denotes the matrix weak norm. Furthermore, while prices and demands are stochastic, the time- and frequency-domain solutions are related through an even stronger result

$$e_{\text{max}}[\text{Var}(\Lambda p - P)] \leq c_P T^{-1/2}$$ \hspace{1cm} (23)$$

$$e_{\text{max}}[\text{Var}(\Lambda q_j - Q_i)] \leq c_Q T^{-1/2}$$ \hspace{1cm} (24)$$

where the operator $e_{\text{max}}[\cdot]$ denotes the maximum eigenvalue of a matrix (that is, the operator norm), for constants c_P and c_Q.\hspace{1cm}^{17}$$

In other words, among portfolios whose squared weights sum to 1, the maximum variance of the pricing and demand errors—the difference between the truth from the time-domain solution
and the frequency-domain approximation that assumes that Λ diagonalizes the covariance matrices – is of order $T^{-1/2}$ (that is, the bound holds for any portfolio of futures, not just the frequency- or time-domain claims). We note also that these are not limiting results – they are true for all T.

Result 1 shows that for large T, the standard time-domain solution for stationary time series processes becomes arbitrarily close to a simple set of parallel scalar problems in the frequency domain. The time domain solution is obtained from the frequency domain solution by premultiplying by Λ.

2 Optimal information choice

We now model a constraint on information acquisition and characterize optimal strategies. The objective, constraint, and solution are drawn from Van Nieuwerburgh and Veldkamp (2009) and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016; KVNV). Our analysis follows theirs closely, except that we are studying a time-series model and a frequency transformation. Whereas KVNV study a symmetric equilibrium in which all investors follow the same information acquisition strategy, we will subsequently argue for the relevance of a separating equilibrium in our setting.

2.1 Objective

Following KVNV, we assume that investors choose information to maximize the expectation of their mean-variance objective (5) subject to an information cost,

$$\max_{\{f_{i,j}\}} E_{-1} \left[U_{i,0} \mid \Sigma_i^{-1} \right] \text{ such that } tr (\Sigma_i^{-1}) \leq \bar{f}^{-1}$$

(25)

where E_{-1} is the expectation operator on date -1, i.e. prior to the realization of signals and prices (as distinguished from $E_{i,0}$, which conditions on P and Y_i).

Total information here is measured by the trace function $tr (\Sigma_i^{-1})$.\(^{18}\) Since the trace of a matrix is equal to the sum of its eigenvalues, this measure of information is the same as summing the total precision of the independent components of the signals. Moreover, since the trace operator is invariant under rotations, our measure of information is invariant to the domain of analysis, time or frequency. That is,

$$tr (\Sigma_i^{-1}) = \sum_{j,j'} f_{i,j}^{-1}$$

(26)

The information constraint is linear in the frequency-specific precisions. Investors also face the constraint that $f_{i,j} = f_{i,j'}$, which ensures that the variance matrix of ε_i is symmetric and Toeplitz.\(^{19}\)

\(^{18}\)Our main analysis considers the case where signals about fundamentals are costly but investors can condition on prices freely. Appendix J considers a case where it is costly to condition expectations on prices and shows that model’s predictions results go through similarly with the caveat that investors never choose to become informed about prices, as in Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016).

\(^{19}\)Appendix I shows that the solution to the individual optimal attention allocation problem (25) is identical if one assumes that the cost of information is measured by the entropy of the investor’s signals, which corresponds to the
An alternative is that rather than all investors having a constraint on the amount of information that they may acquire, there might be a linear cost of information. These two formulations are closely related once (25) is expressed in its Lagrangian form. For now we focus on the constraint case, but when we examine restricting trade, the choice between the two will be relevant.

The appendix shows that, given the optimal demands, an agent’s expected utility is linear in the precision they obtain at each frequency.

Lemma 2 Under the frequency domain representation, when informed investors optimize, each investor’s expected utility may be written as a function of their own precisions, $f_{i,j}^{-1}$, and the average across other investors, $f_{avg,j}^{-1} \equiv \int f_{i,j}^{-1} di$, with

$$E_{-1}[U_{0,i} \mid \{f_{i,j}\}] = \frac{1}{2T} \sum_{j,j'} \lambda_j \left(f_{avg,j}^{-1} \right) f_{i,j}^{-1} + \text{constants} \quad (27)$$

$\lambda_j(x)$ is a function determining the marginal benefit of information at each frequency with the properties $\lambda_j(x) > 0$ and $\lambda'_j(x) < 0$ for all $x \geq 0$. The fact that $\lambda'_j < 0$ says that the marginal benefit to an investor of allocating attention to frequency j is decreasing in the amount of attention that other investors allocate to that frequency: attention decisions are strategic substitutes. If $f_{avg,j}^{-1}$, the average precision of the signals obtained by other agents, is high, then prices are already efficient at frequency j, so there is little benefit to an investor from learning about that frequency.

The frequency-domain transformation is what allows us to write utility as a simple sum across frequencies. An investor’s utility depends additively on the amount of information that they obtain at each frequency. In the time domain, utility is a complicated function of matrices.

2.2 Characterizing the optimum

The critical feature of (27) is that expected utility is linear in the set of precisions that agent i chooses, $\{f_{i,j}^{-1}\}$. Since the both the objective (27) and the constraint (26) are linear in the choice variables, it immediately follows that agents either allocate all attention to a single frequency or that they are indifferent between allocating attention across some subset of the frequencies. We then obtain the following solution for attention allocation.

Solution 2 Information is allocated so that

$$f_{avg,j}^{-1} = \begin{cases}
\lambda_j^{-1}(\bar{\lambda}) & \text{if } \lambda_j(0) \geq \bar{\lambda} \\
0 & \text{otherwise}
\end{cases} \quad (28)$$
where λ is obtained as the solution to

$$\sum_{j,j':\lambda_j(0)>\bar{\lambda}} \lambda_j^{-1}(\bar{\lambda}) = \bar{f}^{-1}. \quad (29)$$

This is the reverse water-filling solution from KVNV. While it may appear mathematically complicated, the intuition is simple: investors allocate attention to signals in such a way that the marginal benefit is equalized to the extent possible across frequencies. It is impossible to allocate negative attention, though, so if the marginal benefit of paying zero attention to a particular frequency, $\lambda_j(0)$, is below the cutoff $\bar{\lambda}$, then $f_{i,j}^{-1} = 0$ there for all investors.

$\bar{\lambda}$ is the shadow cost of information. When information has an explicit constant cost, instead of a constraint, $\bar{\lambda}$ is that cost parameter.

The intuition is easiest to develop graphically. Figure 1 plots the functions $\lambda_j(0)$ and $\lambda_j \left(f_{\text{avg},j}^{-1} \right)$ across frequencies ω_j, where

$$\lambda_j(0) = f_{D,j} \left(1 + \rho^{-2} f_{D,j} f_{Z,j} \right). \quad (30)$$

The initial marginal benefit of allocating attention is increasing in the amount of fundamental information and the volatility of supply.

The details of the calibration are reported in appendix K. What is important here is simply that $\lambda_j(0)$ has peaks at low, middle, and high frequencies. Those are the frequencies at which D_t or Z_t is more volatile, so there is more information to potentially be gathered and a larger reward for doing so. For a given value of \bar{f}^{-1}, $\lambda_j \left(f_{\text{avg},j}^{-1} \right)$ is a flat line for all j such that $\lambda_j(0) \geq \bar{\lambda}$. Those are the frequencies that investors learn about. The term “reverse water filling” refers here to the idea that the curve $\lambda_j(0)$ is inverted and one pours water into it. $\bar{\lambda}$ is then the level of the water’s surface.\(^{20}\) As the information constraint is relaxed, $\bar{\lambda}$ falls and potentially more frequencies receive attention.

Given the calibration, we see that there are investors acquiring information in three disconnected ranges of frequencies. At the places where $\lambda_j(0)$ is farther above $\bar{\lambda}$, there is more information acquisition, whereas the locations where $\lambda_j(0) = \bar{\lambda}$ are marginal in the sense that they are the next to receive attention if $\bar{\lambda}$ falls.

Another way to interpret the results is to observe the following:

\textbf{Result 1} The return at frequency j has variance

$$\text{Var} \left[r_j \right] = \lambda_j \left(f_{\text{avg},j}^{-1} \right) \quad (31)$$

where $r_j \equiv d_j - p_j. \quad (32)$

The marginal benefit of acquiring information at a particular frequency is exactly equal to the unconditional variance of returns at that frequency. When returns have high variance, there

\(^{20}\)Again, each frequency (except 0 and π) has an associated sine and cosine. The same amount of precision is required to be allocated to both the sine and cosine at each frequency.
are potentially large profits to be earned from acquiring information. When returns have zero variance, on the other hand, prices are already perfectly informative, so there is no reason to study fundamentals at such a frequency. So agents desire to learn at the frequencies where returns are most volatile.

The solution derived here characterizes aggregate information acquisition – the sum of the precisions obtained by all the agents at each frequency – but it does not describe exactly what strategy each agent follows; and in fact there are infinitely many strategies for individual investors consistent with the aggregate solution.

The remainder of the paper explores two sets of implications of the solution. First, we study one particular class of equilibria that involve investors specializing and obtaining information about only individual frequencies. We provide evidence that those equilibria are empirically relevant. Second, we use the model to study the effects of restricting trade at specific frequencies. The results on restricting trade do not rely in any way on specialization. They simply follow from the equilibrium derived up to here.

3 Specialization

3.1 The model with specialization

Given the assumptions we have made so far, the only restrictions on information allocation are those that ensure that the information allocation condition (28) holds. There are numerous equilibria with that characteristic, though. KVNV focus on the symmetric equilibrium in which all investors allocate their attention in proportion to \(f_{\text{avg}, j}^{-1} \) at each frequency. There are also asymmetric and mixed-strategy equilibria. To put it differently, in any equilibrium, the aggregate allocation of attention across frequency is always given by (28), but, each individual’s attention allocation is not determined.

Since one of our goals is to understand the potential existence and behavior of high-and low-frequency investors, we now focus on equilibria in which all investors learn about only a single frequency. Specifically, we assume in this section that for every agent \(i \), there is a frequency \(j_i^* \) such that:

\[
\begin{align*}
 f_{i,j} &= f_{i,j'} = \\
 \tilde{f}^{-1}/2 & \text{ if } j = j_i^* \text{ and } j_i^* \notin \{0, T/2\} \\
 \tilde{f}^{-1} & \text{ if } j = j_i^* \text{ and } j_i^* \in \{0, T/2\} \\
 0 & \text{ otherwise }
\end{align*}
\]

(\(\tilde{f}^{-1} \) is divided by 2 in the first case because the agent must pay equal attention to both the sine and the cosine at frequency \(j_i^* \) under the assumption of stationarity for \(\epsilon_{i,t} \)). Specialization here means that agents obtain information about a single frequency and are uninformed about all other frequencies.
3.1.1 Why would investors specialize?

We propose two simple theoretical mechanisms that would make specialization a natural outcome. First, there might be an arbitrarily small fixed cost for each frequency that the agent chooses to learn about. That is equivalent to assuming that there is a fixed cost for each nonzero eigenvalue in the agent’s precision matrix Σ_i^{-1}. Intuitively, there might be some kind of startup cost for each dimension of uncertainty that the agent chooses to reduce. Learning about different frequencies might require hiring different types of analysts, for example.

Proposition 2 Assume that the attention allocation constraint is:

$$\text{tr}(f_i^{-1}) + \kappa \sum_{j,j'} 1 \{ f_{i,j}^{-1} > 0 \} \leq \bar{f}^{-1},$$

where $0 < \kappa < \bar{f}^{-1}$ is a fixed cost of learning about each frequency (or eigenvalue) of fundamentals and $1 \{ \cdot \}$ is the indicator function. Then the attention allocation equilibrium features specialization.

The intuition for the lemma is straightforward. Since in equilibrium, learning about any active frequency (with $\lambda_j(0) \geq \bar{\lambda}$) has the same marginal benefit, learning about more than one frequency requires an extra payment of the fixed cost with zero benefit. As a result, individuals specialize in learning about only one frequency.

That said, the equilibrium is still not unique, but now in a good way: agents are ex-ante identical but end up specializing into learning about a single frequency and they are indifferent about which frequency they learn about.

A second mechanism that generates specialization is for people to have a second-order preference ordering over learning about different frequencies. When, as in the baseline case, agents derive equal utility from learning from any of a number of different frequencies, a second-order preference would cause agents to prefer one frequency in particular.

The appendix analyzes such a scenario. We assume that agents have a second-order preference to learn about either higher or lower frequencies (with the intensity of that preference varying across people). We then show that in any equilibrium, agents will endogenously sort, with each learning about only a single frequency. The same set of frequencies as discussed above will remain active (those with $\lambda_j(0) \geq \bar{\lambda}$), and agents now sort based on the intensity of their preferences. Those who are most interested in high-frequency trading acquire high-frequency information, while those most interested in low-frequency investment acquire low-frequency information. Those with weak preferences end up in the middle.

The point of these two examples is to show that the specialization that we study in this section appears endogenously in plausible scenarios. In reality obviously nobody learns literally about just a single aspect of the world. It is also not the case, though, that everybody learns about everything. We focus here on the case with specialization as it is consistent with the evidence discussed in the
introduction and with new results presented below on the wide divergences in behavior and research across investors.

3.2 Specialization model predictions

We now examine the implications of the model with specialization for the behavior of individual investors, obtaining the following results:

1. Investors can be distinguished by the frequencies at which their portfolio positions fluctuate, and those fluctuations match the frequencies at which they obtain information.

2. In an interpretation of the model in which variation in positions across dates represents dynamic trade over time, the average volume accounted for by an investor is proportional to the frequency at which they trade. In the presence of quadratic trading costs, costs can be linearly decomposed across frequencies and are quadratic in frequency.

3. Investors’ positions are correlated with returns most strongly at the frequency they learn about.

4. Investors earn money from liquidity provision, they earn money from trading at the frequency at which they are informed, and they lose money to other investors from trading at frequencies at which they are uninformed.

3.2.1 Fluctuations in positions

Result 2 Investor i’s demand at frequency j is

\[q_{i,j} = z_j + \rho \left(f_{i,j}^{-1} - f_{avg,j}^{-1} \right) r_j + f_{i,j}^{-1} \tilde{\epsilon}_{i,j} \]

(35)

where \(\tilde{\epsilon}_{i,j} \) is equal to the jth element of \(\Lambda \varepsilon_i \) (the noise in investor i’s signal at frequency j) and \(r_j \) is the realized return on the jth frequency portfolio.

Investor i’s demand depends on three terms. \(z_j \) is the stochastic supply at frequency j. Each investor is equally willing to absorb supply, so they all take equal fractions on average, giving them a common component \(z_j \).

The second term, \(\rho \left(f_{i,j}^{-1} - f_{avg,j}^{-1} \right) r_j \) reflects investor i’s information. At the frequency that investor i pays attention to, \(f_{i,j}^{-1} - f_{avg,j}^{-1} \) is positive, so investor i’s demand covaries positively with returns at that frequency. Investors who learn about low-frequency dynamics hold portfolios that are long when returns are high over long periods, while high-frequency investors hold portfolios that covary positively with transitory fluctuations in returns. At the other frequencies, where investor i does not pay attention, \(f_{i,j}^{-1} = 0 \), so the investor’s demand actually covaries slightly negatively with returns, holding \(z_j \) fixed.

The third term, \(\rho f_{i,j}^{-1} \tilde{\epsilon}_{i,j} \) is the idiosyncratic part of demand that is due to the random error in the signal that agent i receives. Note that the standard deviation of \(f_{i,j}^{-1} \tilde{\epsilon}_{i,j} \) is equal to \(f_{i,j}^{-1/2} \), so these errors are equal to zero at the frequencies that the investor ignores (i.e. all but one).
When the number of active frequencies (i.e., with \(f^{-1}_{avg,j} > 0 \)) is large, \(f^{-1}_{avg,j} \) becomes small relative to \(\tilde{f}^{-1} \). That means that the term \((f^{-1}_{i,j} - f^{-1}_{avg,j}) \) is close to zero at all frequencies except for the one that the agent pays attention to, \(j^*_t \). Since \((f^{-1}_{i,j} - f^{-1}_{avg,j}) \approx 0 \) for all other frequencies, we have

\[
Q_{t,t} \approx Z_t + \cos (\omega j^*_t t/T) \left(\tilde{f}^{-1} r^*_{j^*_t} + \tilde{\varepsilon}_{j^*_t} \right) + \sin (\omega j^*_t t/T) \left(\tilde{f}^{-1} r^*_{j^*_t} + \tilde{\varepsilon}_{j^*_t} \right)
\]

(36)

Investor \(i \)'s demand on date \(t \) thus is approximately equal to supply on that date plus a multiple of the part of returns depending on frequency \(\omega j^*_t, r^*_{j^*_t} \) and \(r^*_{j^*_t} \), plus an error. Investor \(i \)'s information can be thought of as a signal about returns interacted with a cosine and a sine. The important feature of equations (35) and (36) is that they show that each agent's position is equal to \(Z_t \) plus fluctuations that come primarily at the frequency that they pay attention to.\(^{21}\)

As a numerical example, figure 2 plots a hypothetical history for a particular agent's position \(Q_{i,t} \) in the same calibration that we studied above. We see that \(Q_{i,t} \) looks like a sinusoid with noise added; the noise is from the \(Z_t \) term in (36). The noise in the agent's signal, \(\tilde{\varepsilon}_{j^*_t} \) and \(\tilde{\varepsilon}_{j^*_t} \), simply changes the amplitudes of the fluctuations at frequency \(\omega j^*_t \).

So equations (35) and (36) deliver our first two basic results for the behavior of individual specialized investors: the investors can be distinguished by the frequencies at which their asset holdings fluctuate, and those frequencies are linked to the type of information that they acquire. The first result, that there are traders at different frequencies, is essentially obtained by design: it follows from the assumption that agents specialize across frequencies. Nevertheless, the finding is interesting for its novelty in a theoretical setting.

The fact that the frequency of trading is related to information acquisition, while not surprising, is certainly not obtained by assumption. In past work, different trading behavior has sometimes been obtained by simply assuming that different agents have different exogenously specified trading horizons. In our case, any investor can potentially trade at any frequency. That choice is entirely endogenous – investors are not forced to trade any particular frequency by assumption. So the model provides a testable prediction that we should observe investors doing research about asset return dynamics that aligns in terms of frequency or time horizon with their average holding periods.

\(^{21}\)More formally, the variance of \(Q_{i,t} - Z_t \) can be decomposed as \(Var (Q_{i,t} - Z_t) = \sum_j \left(\rho^2 (f^{-1}_{i,j} - f^{-1}_{avg,j})^2 f_{R,j} + f_{i,j} \right) \). Now consider a simple case where there are \(N \) frequencies that receive equal allocations of information. Furthermore, denote the spectrum of returns as \(f_{R,j} \). Then we have

\[
\lim_{N \to \infty} Var (Q_{i,t} - Z_t) = \rho^2 \tilde{f}^{-2} f_{R,j^*_t} + f_{i,j}^{-1}
\]

(37)

which shows that \(Q_{i,t} - Z_t \) is driven by fluctuations at a single frequency.

Note also that the cosine and sine can be collapsed into a single trigonometric function that also fluctuates at frequency \(j^*_t \),

\[
Q_{i,t} \approx Z_t + \sqrt{\frac{(\tilde{f}^{-1} r^*_{j^*_t} + \tilde{\varepsilon}_{j^*_t})^2}{(\tilde{f}^{-1} r^*_{j^*_t} + \tilde{\varepsilon}_{j^*_t})^2} \cos (\omega j^*_t t/T + C_{i,j})}
\]

(38)

where \(C_{i,j} \) is a function of \((\tilde{f}^{-1} r^*_{j^*_t} + \tilde{\varepsilon}_{j^*_t}) \) and \((\tilde{f}^{-1} r^*_{j^*_t} + \tilde{\varepsilon}_{j^*_t}) \). So agent \(i \)'s excess demand is approximately a cosine with a random translation and amplitude.
3.2.2 How do investors earn money?

Investors earn returns in the model through two basic mechanisms: providing liquidity and trading on private signals. We can see from the results on demand above that the liquidity function is spread equally across investors. The effects of private information are more interesting.

Result 3 Investor i’s expected profits (which are also equal to the covariance of their positions with returns) are

$$E[Q_i'R] = \sum_j E[q_i,j r_j]$$

$$= \sum_j E[z_j r_j] + \rho \left(f_{-1}^j - f_{avg,j}^{-1} \right) f_{R,j}^* - \sum_{j \neq j^*_i} \rho f_{avg,j} f_{R,j}$$

where the spectrum of returns is (from (31))

$$f_{R,j} = \max(\bar{\lambda}, \lambda_j(0))$$

The first term on the right-hand side is the contribution from each investor’s liquidity provision. The second term is the positive covariance of the investor’s holdings with returns at the frequency they are informed about. If informed investors have demands that covary positively with returns at a particular frequency, then the investors who are uninformed about that frequency must have demands that covary negatively with returns (after accounting for $E[z_j r_j]$). That is the third term above: there is a negative contribution to the correlation of the investor’s demands with returns from the frequencies they do not pay attention to.

It is not the case that trading from frequencies $j \neq j^*_i$ is unprofitable. Investors still earn profits from liquidity provision. It is just the case that some of their profits at those frequencies are taken by investors who are more informed. In some sense, this result is inevitable. The total profits that the informed investors earn as a group come from trading with liquidity demand. If an investor earns more money by becoming informed at some frequency, that must come at the cost of other investors.

Now since the information allocation we find is an optimum, obviously investors must be in some sense comfortable with the losses we see here. Intuitively, the slight trading losses they bear at frequencies other than j^*_i are offset by their gains at j^*_i. But obviously any trading that informed investors do that is not related to exogenous supply must ultimately come at the cost of other informed investors.

So the model has the feature that high-frequency investors earn money at high frequencies, but they lose money at lower frequencies relative to other investors. Low-frequency investors might know that oil prices are on a long-term downward trend. In such a situation, the high-frequency investors can still earn profits by betting on day-to-day movements in oil prices, but they will lose money to those who understand that prices are generally drifting down. Similarly, low-frequency
investors will tend to lose out at high frequencies by, for example, failing to trade at precisely the
time, buying slightly too high and selling slightly too low compared to where they would if
they had high-frequency information.

3.2.3 Volume and trading costs

Since all trade happens on date 0, the model does not have a literal description of trade. To try
to understand at least heuristically the implications of the model for dynamic trade, we consider
an alternative implementation of the equilibrium. Rather than trading futures contracts on date
0, investors could all agree on date 0 to trading claims on fundamentals in the future.

We define a date-\(t\) equity claim to be an asset that pays dividends equal to the fundamental on
each date from \(t + 1\) to \(T\). Since the futures contracts involve exchanging money only at maturity,
the date-\(t\) cost of an equity claim is

\[
P_{t}^{\text{equity}} = \sum_{j=1}^{T-t} R_f^{-j} P_{t+j}
\]

where \(R_f\) is the riskless discount rate, which we assume to be constant.

An investor’s exposure to fundamentals on date \(t\), \(Q_{i,t}\), can be acquired either by buying \(Q_{i,t}\)
units of forwards on date 0 or by holding \(Q_{i,t}\) units of equity entering date \(t\). We therefore interpret
volume of trade by investor \(i\) as coming from the change in \(Q_{i,t}\) over time. In the context of the
model, this interpretation is valid if the equilibrium is implemented by the investors committing
on date 0 to trading equity over time.

Using equity to measure volume ensures that a person who has position that does not change
between dates \(t\) and \(t + 1\) (\(Q_{i,t} = Q_{i,t+1}\)) induces no trade volume, whereas if we assumed that
every forward position required volume, then each investor’s contribution would be \(|Q_{i,t}|\) each date,
meaning, unrealistically, that buy-and-hold investors would contribute constantly to volume.

The equity volume contributed by investor \(i\) is

\[
V_{i,t} = |\Delta Q_{i,t}|
\]

where \(\Delta Q_{i,t} \equiv Q_{i,t} - Q_{i,t-1}\)

Recall that investors’ positions can be written as functions of cosines and sines. The appendix
derives the following result for volume for each investor.

Result 4 The volume induced by investor \(i\), \(|\Delta Q_{i,t}|\), may be approximated as

\[
|\Delta Q_{i,t}| \approx |\Delta Z_t| + \omega_{j_t^i} \tilde{f}^{-1} \rho \left| \sin \left(\omega_{j_t^i} t \right) \left(r_{j_t^i} + \tilde{\alpha}_{i,j_t^i} \right) + \cos \left(\omega_{j_t^i} t \right) \left(r_{j_t^i} + \tilde{\alpha}_{i,j_t^i} \right) \right|
\]

20
and has expectation

\[
E[|\Delta Q_{i,t}|] - E[|\Delta Z_t|] \approx \omega_{j^*} \sqrt{2 \pi \rho \left(\bar{\lambda}^{-1} + 1/2 \right)}.
\]
(46)

The approximations converge to true equalities as \(T \to \infty \).

So we find that agent \(i \)'s contribution to volume depends on the volume induced by exogenous supply and also the magnitude of returns at frequency \(\omega_{j^*} (\bar{\lambda}) \).

Agent \(i \)'s contribution to aggregate volume is also exactly proportional to the frequency they allocate attention to, \(\omega_{j^*} \). High-frequency investors contribute relatively more to aggregate volume because they have portfolios than change most rapidly. An investor at the very lowest frequency, \(\omega = 0 \), contributes zero volume beyond that induced by exogenous supply, since their position is nearly constant. Investors at \(\omega = \pi \), on the other hand, contribute the maximum possible volume as they approximately turn over their entire portfolios in each period.

Not surprisingly, it is also straightforward to show that high-frequency investors typically will face larger trading costs. As an example, consider quadratic trading costs proportional to \(\sum_{t=2}^{T} (Q_{i,t} - Q_{i,t-1})^2 \). The appendix shows that trading costs can, just like volume, be decomposed across frequencies.

Result 5 The quadratic variation in an investor's position can be approximated (with convergence as \(T \to \infty \)) by

\[
\sum_{t=2}^{T} (Q_{i,t} - Q_{i,t-1})^2 \approx (2\pi)^2 \sum_{j,j'} j^2 T^{-1} q_{i,j}^2.
\]
(47)

The quadratic trading costs associated with a given demand vector \(Q_i \) can be written as a simple sum across frequencies. Trading costs are proportional to the frequency squared. It is thus immediately apparent from our frequency-domain analysis that changes in the magnitude of trading costs have the largest effects on the highest frequencies.

4 Institutional portfolio turnover and return forecasting

In this section, we demonstrate empirically that investment funds specialize in the frequency at which they trade, and we show that the portfolio holdings of high turnover funds forecast returns at relatively shorter horizons than those of lower turnover funds.

4.1 Data

We obtain data on institutional asset holdings from SEC form 13F. These forms list the identities and quantities of Securities held by each institution at the end of the filing quarter.\(^{22}\) The data

\(^{22}\)Institutions are required to report only their holdings of 13(f) securities, a category defined by the SEC that includes exchange-traded equities and some securities that can be converted to equity. Only institutions holding more than $100,000,000 in 13(f) securities at the end of the quarter must file form 13F, and each institution is required to
cover the period 1980–2015. Data on monthly stock returns is taken from CRSP and is aggregated to a quarterly frequency with delisting returns included. We obtain data on the risk-free rate, market return, and Fama–French (1993) factors from Kenneth French’s website.

4.2 Fund specialization

Yan and Zhang (2009) define the churn rate \(c_{i,t}\) of institution \(i\) in quarter \(t\) as

\[
c_{i,t} \equiv \min \left(\frac{\sum_{s|\Delta S_{i,s,t} > 0} P_{s,t} \Delta S_{i,s,t} - \sum_{s|\Delta S_{i,s,t} \leq 0} P_{s,t} |\Delta S_{i,s,t}|}{\frac{1}{2} \sum_{s} P_{s,t-1} S_{i,s,t-1} + \frac{1}{2} \sum_{s} P_{s,t} S_{i,s,t}} \right),
\]

where \(P_{s,t}\) is the price and \(S_{i,s,t}\) is the number of shares of stock \(S\) held by institution \(i\) at the end of quarter \(t\). The churn rate is equal to the minimum of net purchases and sales during quarter \(t\) as a fraction of the institution’s average value over the two quarters, and it is used to measure the turnover of each institution’s portfolio. Due to the presence of the minimum operator, institutions must both buy and sell large fractions of their portfolios to register a high churn rate. The mean churn rate is 0.12 and the standard deviation is 0.14, indicating a high degree of right skewness as the minimum churn rate is zero.

If institutions specialize in the rate at which they trade, then the churn rate should be persistent over time within institutions. Figure 5 plots the sample autocorrelations \(\text{corr}(c_{i,t}, c_{i,t-\Delta t})\) for \(\Delta t \geq 2\). The churn rate strongly persists over time, with an autocorrelation of 0.51 over 10 years and 0.21 over 30 years.\(^{23}\) We also find that institution fixed effects (\(\delta_i\)) account for 65 percent of the variance in the churn rate in the regression \(c_{i,t} = \delta_i + \varepsilon_{i,t}\), where \(\varepsilon_{i,t}\) a residual.

4.3 Fund performance

To separate institutions according to their trading frequency, at each quarter \(t\) we divide institutions into deciles, denoted \(d\), based on the mean of \(c_{i,t}\) over the previous five years.\(^{24}\) For simplicity, we restrict attention to top and bottom deciles \((d = 10\) and \(d = 1\)). Table 1 lists several institutions in these extreme deciles during the most recent quarter in our data. The top decile contains several well-known quantitative and high-frequency trading firms, whereas the bottom contains endowments and insurance companies. These findings echo those of Cella, Ellul, and Giannetti (2013), who find that the churn ratio is highest for hedge funds and lowest for pension funds and university and foundation endowments.

\(^{22}\) report only securities for which its holdings exceed $200,000 or 10,000 shares. Gompers and Metrick (2001) provide more information on these filings. We use Thompson Reuters’s database of these filings, which includes the price of each security at the filing date.

\(^{23}\) Institution identifiers can be reassigned over time in the 13F data, leading to measurement error that biases the longer-term autocorrelations towards zero.

\(^{24}\) We restrict attention to institutions for which the \(t + 1\) return on some of their holdings appears in CRSP, as these are the only institutions that can be analyzed in our return regressions.
At the beginning of quarter t, we average the portfolio holdings of all the funds in each decile d at the end of quarter $t - 1$ (with equal weight on each fund) and then track the returns on that aggregate decile-level portfolio over subsequent quarters, reinvesting proceeds from any delistings in the remaining stocks in the portfolio according to their value weights at that time. The return during quarter t of the decile d portfolio formed in quarter $t - k$ is denoted $r_{d,k,t}$.

We measure the performance of each portfolio by its alpha,

$$r_{d,k,t} - r_f^t = \alpha_{d,k} + \beta_{d,k} F_t + \varepsilon_{d,k,t},$$

where F_t is a vector of market risk factors; $F_t = r_m^t - r_f^t$ in the CAPM specification and $F_t = (r_m^t - r_f^t, r_{smb}^t, r_{hml}^t)'$ in the Fama-French specification (r_{smb}^t and r_{hml}^t are returns on the SMB and HML portfolios, respectively). We focus on returns over the first two years after portfolio formation by estimating (49) only for $k \leq 8$.

Figure 6 displays alphas in the two specifications. For simplicity, we compare the alphas in the first quarter ($\alpha_{d,1}$) to those in the following seven quarters, $\alpha_{d,>1} = \frac{1}{7} \sum_{j=2}^{8} \alpha_{d,j}$. The holdings of high-turnover funds out-perform more during the first quarter, while those of low-turnover funds out-perform more during subsequent quarters. The difference in differences $(\alpha_{10,1} - \alpha_{10,>1}) - (\alpha_{1,1} - \alpha_{1,>1})$, which measures the relative out-performance of high churn holdings versus low churn holdings at short versus long horizons, is equal to 0.005 in both specifications and is significant at the 5 percent level. So, consistent with the model, high-turnover funds hold stocks that outperform relatively more in the short-run, while low-turnover funds hold assets that display more persistent outperformance.

5 The effects of regulating investment strategies

Recently there has been interest in policies that might restrict high-frequency trading. Some of those policies are aimed at investors who trade at the very highest frequencies (such as the CFTC’s...
recently proposed Regulation AT; see CFTC (2016)). But there are also proposals to discourage even portfolio turnover at the monthly or annual level. There are two ways to interpret such policies. One would be that regulators might impose a tax on trading, which would simply represent a transaction cost. Such a regulation would obviously have the strongest effects on high-frequency traders, but it would ultimately affect all trading strategies. A more targeted policy would be one that simply outlawed following a trading strategy in which positions fluctuate at frequencies above some bound.

Since the model in this paper is not fully dynamic, it cannot give a full analysis of the effects of regulating trade. However, we have shown that the model has implications for the types of strategies that investors follow and for how their exposures to fundamentals vary across dates. To the extent that regulation of investors limits the strategies that they may follow, we can directly analyze the implications of such restrictions in the present model.

This section shows that a policy that restricts investors from following strategies that involve high-frequency fluctuations – i.e. strategies with exposures to fundamentals that vary rapidly over time – reduces liquidity and price informativeness and increases return volatility at high frequencies. At the frequencies not targeted by the policy, though, price informativeness is, if anything, increased.

5.1 The policy

The strategy restriction that we study is that the investors in the model (though not the noise trader demand) are restricted from following strategies that have components that fluctuate in some frequencies. Specifically, investors are restricted to setting \(q_{i,j} = 0 \) for \(\omega_j \) in the relevant frequency range. When \(q_{i,j} \) must equal zero at some set of frequencies, obviously no trader will allocate attention to those frequencies.

In cases where the sophisticated investors must set \(q_j = 0 \), there can obviously be no equilibrium since liquidity demand is perfectly inelastic. We therefore consider a simple extension to the baseline model where the exogenous supply curve is elastic,

\[
 Z_t = \bar{Z}_t + k P_t \\
 z_j = \bar{z}_j + kp_j
\]

where \(\bar{Z}_t \) is the exogenous supply process and \(k \) is the response of supply to prices.

The appendix solves this extended version of the model. We obtain the same water filling equilibrium. For the frequencies that are restricted,

\[
 p_j^{restricted} = -k^{-1} \bar{z}_j.
\]

\footnote{The US tax code, for example, encourages holding assets for at least a year through the higher tax rates on short-term capital gains. There have been recent proposals to further expand such policies (a plan to create a schedule of capital gains tax rates that declines over a period of six years was attributed to Hillary Clinton during the 2016 US Presidential election; see Auxier et al. (2016)).}
That is, prices at the restricted frequencies are now completely uninformative, depending only on supply, with no relationship with fundamentals. Moreover, the market is completely illiquid in the sense that when exogenous supply increases, there is no change in trade – prices just move so that trade remains at zero. In other words, prices equilibrate the market instead of quantities.

5.2 Return volatility

Result 6 Given an information policy $f_{avg,j}^{-1}$, the variance of returns at frequency j, when trade is unrestricted (i.e. in the benchmark model from above), is

$$f_R(\omega_j) \equiv \text{Var}(r_j)$$

$$= \lambda_j(f_{avg,j}^{-1})$$

$$= \min(\lambda, \lambda_j(0))$$.

where

$$\lambda_j(0) = f_{D,j} + \frac{f_{Z,j}}{(k + \rho f_{D,j}^{-1})^2}$$

Recall that f_R is also the spectrum of returns, $R_t \equiv D_t - P_t$.

So the spectrum of returns inherits exactly the water-filling property of the marginal benefits of information. In the context of our benchmark calibration, the spectrum of returns is exactly the $\lambda_j(f_{avg,j}^{-1})$ curve plotted in figure 1.

That result does not apply when the investment restriction is in place.

Result 7 The variance of returns at any restricted frequency, where q_i,j must equal zero, is

$$f_{R,j}^{\text{restricted}} = f_{D,j} + \frac{f_{Z,j}}{k^2}$$

and

$$f_{R,j}^{\text{restricted}} > \lambda_j(0)$$.

The volatility of returns at a restricted frequency is higher than it would be if the sophisticated investors were allowed to trade, even if they gathered no information. Intuitively, when the active investors have risk-bearing capacity ($\rho > 0$), they can absorb some of the exogenous supply. The greater is the risk-bearing capacity, the smaller is the effect of supply volatility on return volatility.

We examine the quantitative implications of restricting trade in the context of the calibration used above. The top panel of figure 3 plots $f_{avg,j}^{-1}$ in the restricted and unrestricted scenarios. The restriction is that investors are not allowed to follow strategies at frequencies above $\omega = 3$ (cycle lengths shorter than 2.1 periods). We see, then, that no information is acquired at those frequencies. That means, though, that investors can allocate their attention elsewhere, so we observe more information acquisition at other frequencies.
That latter result follows from the fact that investors have a budget of attention that must be allocated to this market. If, instead, there is a marginal cost of information, or if information can be allocated outside the market we are modeling, then the attention allocated to the unrestricted frequencies is unchanged. The model’s prediction is thus that information acquisition only weakly increases at the unrestricted frequencies.

The bottom panel of figure 3 plots return volatility in the two regimes and also when investors can trade at all frequencies, but they are just restricted from gathering information at high frequencies. At high frequencies, we see that the restrictive policy has two separate effects that both strongly affect return volatility. First, when investors can trade but do not gather information, there is a jump in return volatility at the frequencies where \(f_{avg}^{-1} \) is constrained to zero (up to \(\lambda_j(0) \)). But under the full restriction, where they cannot trade at all, we see that the effect on return volatility is much larger, due to the reduced risk bearing capacity.

At the unrestricted frequencies, return volatility actually weakly declines, again due to the fact that more attention is allocated to those frequencies. As before, if information has a cost instead of a constraint, then the volatility of returns at unrestricted frequencies does not decline. A corollary to those results is that, in the case where information has a constant cost (\(\bar{\lambda} \) is fixed), the unconditional variance of asset returns rises when trade is restricted at any frequency.

Restricting sophisticated investors (such as dealers or proprietary trading firms) from following high-frequency strategies in this model can thus substantially raise asset return volatility at high frequencies – it can lead to, for example, large minute-to-minute fluctuations in prices (though note that those fluctuations in prices are, literally, variations in prices across maturities for different futures contracts on date 0). Sophisticated traders typically play a role of smoothing prices across dates, essentially intermediating between excess inelastic demand in one minute and excess inelastic supply in the next. When they are restricted from holding positions in futures that fluctuate from minute to minute, they can no longer provide that intermediation service. Such behavior has no impact on low-frequency volatility in prices, though. Even when there is no high-frequency investment, changes in average prices between one year and the next are essentially unaffected.

5.3 Price informativeness and efficiency

The fact that the sophisticated investors choose to allocate no attention to high frequencies under the restriction obviously has implications for price efficiency there. To see precisely how, we measure price informativeness as the precision of a person’s prediction of fundamentals conditional on observing prices only, \(\text{Var} (D_t | P) \). In the frequency domain we have

\[
\bar{\tau}_j \equiv \text{Var} (d_j | p)^{-1} = \left(\rho f_{avg,j}^{-1} \right)^2 f_{D,j}^{-1} f_{Z,j}^{-1} + f_{D,j}^{-1}
\]
price-based precision, $\bar{\tau}_j$ is higher at frequencies where there is less fundamental uncertainty ($f_{D,j}^{-1}$ is lower), where there is less variation in liquidity demand ($f_{Z,j}^{-1}$ is lower) or where investors acquire more information ($f_{av,j}^{-1}$ is higher). So when trading strategies are restricted and $f_{av,j}^{-1}$ endogenously falls to zero at the restricted frequencies, price informativeness, unsurprisingly, falls to the prior variance, $f_{D,j}^{-1}$; prices contain no information. The decline in informativeness happens, though, only at the restricted frequencies.\footnote{To see that result in the time domain, the appendix shows that $Var(D_t | P) = \frac{1}{T} \sum_{j,j'} \bar{\tau}_{j}^{-1}$. The variance of an estimate of fundamentals conditional on prices at a particular date is equal to the average of the variances across all frequencies. So when uncertainty, $\bar{\tau}_{j}^{-1}$, rises at some set of frequencies, the informativeness of prices for fundamentals on every date falls by an equal amount.}

Result 8 If trade is restricted at some set of frequencies, prices become less informative at those frequencies ($\bar{\tau}_j$ falls) but informativeness is unaffected or increased at all other frequencies.

5.3.1 Informativeness for moving averages of D_t

If a person is making decisions based on estimates of fundamentals from prices and they are worried that prices are contaminated by high-frequency noise, a natural response would be to examine an average of fundamentals and prices over time (or across maturities of futures contracts). For averages of fundamentals, we have the following:

Result 9 The variance of an estimate of the average of fundamentals over dates t to $t + n - 1$ conditional on observing the vector of prices, P, is

$$Var\left(\frac{1}{n} \sum_{m=0}^{n-1} D_{t+n} | P\right) = \frac{1}{nT} \sum_{j,j'} F_n(\omega_j) \bar{\tau}_j^{-1}$$

where $F_n(\omega_j) \equiv \frac{1}{n} \frac{1 - \cos(n\omega_j)}{1 - \cos(\omega_j)}$ \hspace{1cm} (62)

and $\bar{\tau}_j$ is defined in (59).\footnote{This definition for $F_n(\omega)$ is invalid for $\omega = 0$. More formally, $F_n(\omega) \equiv 1 + 2n^{-1} \sum_{k=0}^{n-1} \sum_{s=1}^{k} \cos(s\omega)$. These definitions are identical at all other points.}

F_n is the Fejér kernel. $F_1 = 1$, and as n rises, the mass of the Fejér kernel migrates towards the origin. That is, it places progressively less mass on high frequencies and more on low frequencies (it always integrates to 1). Specifically,

$$\frac{1}{T} \sum_{j,j'} F_n(\omega_j) = 1$$

$$\lim_{n \to \infty} F_n(\omega) = 0 \text{ for all } \omega \neq 0$$

The total weight allocated across the frequencies always sums to 1, and as n rises, the mass becomes allocated eventually purely to frequencies local to zero.
This result shows that the informativeness of prices for moving averages of fundamentals places relatively more weight on low- than high-frequency informativeness. So even if prices have little or no information at high frequencies – $\tilde{\tau}_j$ is small for large j, there need not be any degradation of information about averages of fundamentals over multiple periods, as they depend primarily on precision at lower frequencies (smaller values of j).

The top panel of figure 4 plots the Fejér kernel, F_n, for a range of values of n. One can see that even with $n = 2$, the weight allocated to frequencies above the cutoff of $\omega = 3$ that we use in the example in figure 3 is close to zero. As n rises higher, the weight falls towards zero at a progressively wider range of frequencies. Equation (61) therefore shows that while a reduction in precision at high frequencies due to trading restrictions will reduce the informativeness of prices about fundamentals on any single date, it has quantitatively small effects on the informativeness of prices for fundamentals over longer periods.

Moving averages of fundamentals depend less on the precise high-frequency details of the world, so when high-frequency information is reduced, we would not expect to see a reduction in the informativeness of prices for moving averages. More concretely, going back to our example of oil futures, when investors are not allowed to use high-frequency investment strategies, prices become noisier, making it more difficult to obtain an accurate forecast of the spot price of oil at some specific moment in the future. If one is interested in the average of spot oil prices over a year, on the other hand, then we would expect futures prices to remain informative, even when high-frequency strategies are restricted. The Fejér kernel formalizes precisely how a restriction on investment at some set of frequencies affects the informativeness of moving averages of prices.

In the end, this section shows that the model has two key predictions for the effects of restrictions on investment strategies. First, at the frequencies at which investment is restricted, price informativeness falls and return volatility rises (due to both information effects and liquidity effects). Second, though, price informativeness at unrestricted frequencies is, if anything, improved by the policy. So if a manager is making investment decisions based on fundamentals only at a particular moment, then that decision will be hindered by the policy since prices now have more noise. But if decisions are made based on averages of fundamentals over longer periods, e.g. over a year, then the model predicts that there need not be adverse consequences. If anything, low-frequency price informativeness may increase as investors reallocate attention to lower frequencies.

6 Conclusion

This paper develops a model in which there are many different investors who all trade at different frequencies. Investors in real-world markets follow countless strategies that are associated with rates of turnover that differ by multiple orders of magnitude. We show that in fact it is entirely natural that investors would differentiate along the dimension of investment frequency.

It has been standard in the literature for decades to focus on factors or principal components when studying the cross-section of asset returns. For stationary time series, the analog to factors or
principal components is the set of fluctuations at different frequencies. So just as it seems natural for investors to focus on particular factors in the cross-section of returns, e.g. value stocks, a particular industry, or a particular commodity, it is also natural for investors to focus on fluctuations in fundamentals at a particular frequency, like quarters, business cycles, or decades.

Such an attention allocation problem can be solved using a combination of standard tools from time series econometrics and the literature on equilibria in financial markets. We show that the model fits a wide range of basic stylized facts about financial markets: investors can be distinguished by turnover rates; trading frequencies align with research frequencies; volume is driven primarily by high-frequency traders; and the positions of informed traders forecast returns at a horizon similar to their holding period.

Since the model has a rigorous concept of what being a high- or low-frequency trader entails, it is particularly useful for studying the effects of regulatory policies that would restrict trade at certain frequencies, whether by outlawing it or by simply making it more costly. We find that not only do such policies reduce the informativeness of prices at those frequencies, they also reduce liquidity and increase return volatility. In fact, return volatility will in general be raised even above where it would be in the complete absence of information, since eliminating active traders from the market removes their risk-bearing capacity. Because the allocation of attention to high- and low-frequency trading is endogenous, return volatility may decrease at lower frequencies as a result of such policies.

At this point, the primary drawback of the model in our view is that it is not fully dynamic. In a certain sense we have to assume that investors do not update information sets over time. While that simplification does not interfere with the model’s ability to match a wider range of basic facts about financial markets, a simple desire for realism suggests that incorporating dynamic learning is an obvious next step.

References

A Non-stationary fundamentals

If fundamentals are non-stationary, e.g. if D_t has a unit root, then Σ_D is no longer Toeplitz and our results do not hold. In that case, we assume that D_0 is known by all agents and that the distribution of $\Delta D_t \equiv D_t - D_{t-1}$ is known, with covariance matrix $\Sigma_{\Delta D}$. Then the entire problem can simply be rescaled by defining $\tilde{P}_t \equiv P_t - D_{t-1}$, so that

$$R_t = D_t - P_t$$

$$= \Delta D_t - \tilde{P}_t$$ (65) (66)

Our analysis then applies to \tilde{P}_t and ΔD_t, with $Q_{i,t}$ continuing to represent the number of forward contracts on D_t that agent i buys. That is, we are allowing agents to condition demand $Q_{i,t}$ not just on signals and prices, but also the level of D_{t-1}, simply through differencing.

B Proof of lemma 1

Gray (2006) shows that for any circulant matrix (a matrix where row n is equal to row $n-1$ circularly shifted right by one column, and thus one that is uniquely determined by its top row), the discrete Fourier basis, $u_j = [\exp (i\omega_j t), t = 0, ..., T-1]'$ for $j \in \{0, ..., T-1\}$, is the set of eigenvectors.

Let Σ be a symmetric Toeplitz matrix with top row $[\sigma_0, \sigma_1, ..., \sigma_{T-1}]$. Define the function $\text{circ}(x)$ to be a circulant matrix with σ_{circ} as its top row. Define a vector σ

$$\sigma \equiv [\sigma_0, \sigma_1 + \sigma_{T-1}, \sigma_2 + \sigma_{T-2}, ..., \sigma_{T-2} + \sigma_2, \sigma_{T-1} + \sigma_1]'$$ (67)

Following Rao (2016), we “approximate” Σ by the circulant matrix $\Sigma_{\text{circ}} \equiv \text{circ}(\sigma_{\text{circ}})$. Since Σ_{circ} is symmetrical, one may observe that its eigenvalues repeat in the sense that $u_j'\Sigma_{\text{circ}} = u_{T-j}'\Sigma_{\text{circ}}$ for $0 < j < T$. Since pairs of eigenvectors with matched eigenvalues can be linearly combined to yield alternative eigenvectors, it immediately follows that the matrix Λ from the main text contains a full set of eigenvectors for Σ_{circ}. The associated eigenvalues are

$$f_{\Sigma_{\text{circ}}} (\omega_j) = \sigma_0 + 2 \sum_{t=1}^{T-1} \sigma_t \cos(\omega_j t)$$ (68)

We can write this relationship more compactly as:

$$\Sigma_{\text{circ}} \Lambda = \Lambda f_\Sigma$$

$$\Lambda' \Sigma_{\text{circ}} \Lambda = f_\Sigma$$
where the $T \times T$ diagonal matrix f_Σ is given by:

$$f_\Sigma = diag \left(f_\Sigma(\omega_0), f_\Sigma(\omega_1), \ldots, f_\Sigma(\omega_T), f_\Sigma(\omega_1), f_\Sigma(\omega_2), \ldots, f_\Sigma(\omega_{T-1}) \right)'.$$

The approximate diagonalization of the matrix Σ consists in writing:

$$\Lambda' \Sigma \Lambda = f_\Sigma + R_\Sigma$$
where $R_\Sigma \equiv \Lambda' (\Sigma - \Sigma_{circ}) \Lambda$

By direct inspection of the elements of $\Sigma - \Sigma_{circ}$, one may see that the m, n element of R_Σ, denoted $R_{\Sigma}^{m,n}$ satisfies (defining λ_m to be the mth column of Λ and $\lambda_{m,n}$ to be its m, n element)

$$R_{\Sigma}^{m,n} = \lambda_m' (\Sigma - \Sigma_{circ}) \lambda_n$$

$$= \sum_{i=1}^{T} \sum_{j=1}^{T} \lambda_{m,i} \lambda_{n,j} (\Sigma - \Sigma_{circ})^{m,n}$$

$$\leq \sum_{i=1}^{T} \sum_{j=1}^{T} \frac{2}{T} (\Sigma - \Sigma_{circ})^{m,n}$$

$$\leq \frac{4}{T} \sum_{j=1}^{T-1} j |\sigma_j|$$

where $(\Sigma - \Sigma_{circ})^{m,n}$ is the m, n element of $(\Sigma - \Sigma_{circ})$. So R_Σ is bounded elementwise by a term of order T^{-1}. One may show that the weak norm satisfies $|\cdot| \leq \sqrt{T} |\cdot|_{\max}$, where $|\cdot|_{\max}$ denotes the elementwise max norm, which thus yields the result that $|\Lambda \Sigma' \Lambda - diag (f_\Sigma)| \leq bT^{-1/2}$ for some b.

B.1 Convergence in distribution and O bounds

Define the notation \Rightarrow to mean that $\Lambda X \Rightarrow N \left(0, \hat{\Sigma}_X \right)$ if $\Lambda X \sim N \left(0, \Sigma_X \right)$ and $|\hat{\Sigma}_X - \Sigma_X| = O \left(T^{-1/2} \right)$.

The notation O indicates

$$|A - B| = O \left(T^{-1/2} \right) \iff |A - B| \leq bT^{-1/2}$$

for some constant b and for all T. This is a stronger statement than typical big-O notation in that it holds for all T, as opposed to holding only for some sufficiently large T.

C Derivation of solution 1

Since the optimization is entirely separable across frequencies (confirmed below), we can solve everything in scalar terms. To save notation, we suppress the \(j \) subscripts indicating frequencies in this section when they are not necessary for clarity. So in this section \(f_D \), for example, is a scalar representing the spectral density of fundamentals at some arbitrary frequency.

C.1 Statistical inference

We guess that prices take the form

\[
p = a_1 d - a_2 z
\]

(74)

The joint distribution of fundamentals, signals, and prices is then

\[
\begin{bmatrix}
 d \\
y_i \\
p
\end{bmatrix}
\sim N
\begin{pmatrix}
 0, \\
 f_D \\
 f_D + f_i \\
 a_1 f_D \\
 a_1 f_D \\
 a_1^2 f_D + a_2^2 f_Z
\end{pmatrix}
\]

(75)

The expectation of fundamentals conditional on the signal and price is

\[
E[d \mid y_i, p] = \begin{bmatrix} f_D & a_1 f_D \\ a_1 f_D & a_1^2 f_D + a_2^2 f_Z \end{bmatrix}^{-1} y_i
\]

(76)

\[
= [1, a_1] \begin{bmatrix} 1 + f_i f_D^{-1} & a_1 \\ a_1 & a_1^2 + a_2^2 f_Z f_D^{-1} \end{bmatrix}^{-1} y_i
\]

(77)

and the variance satisfies

\[
\tau_i \equiv Var[d \mid y_i, p]^{-1} = f_D^{-1} \left(1 - \begin{bmatrix} 1 & a_1 \\ a_1 & a_1^2 + a_2^2 f_Z f_D^{-1} \end{bmatrix} \right)^{-1} \left(\begin{bmatrix} 1 \\ a_1 \end{bmatrix} \right)^{-1} = \frac{a_1^2}{a_2^2 f_Z^{-1} + f_i^{-1} + f_D^{-1}}
\]

(78)

(79)

We use the notation \(\tau \) to denote a posterior precision, while \(f^{-1} \) denotes a prior precision of one of the basic variables of the model. The above then implies that

\[
E[d \mid y_i, p] = \tau_i^{-1} \left(f_i^{-1} y_i + \frac{a_1}{a_2^2 f_Z^{-1}} p \right)
\]

(80)
C.2 Demand and equilibrium

The agent’s utility function is (where variables without subscripts here indicate vectors),

\[U_i = \max_{\{Q_{i,t}\}} \left\{ Q_{i,t} \rho - E_0,i \left[T^{-1/2}Q_i (D - P) \right] - \rho^{-2} \text{Var}_{0,i} \left[T^{-1/2}Q_i (D - P) \right] \right\} \]

(81)

\[= \max_{\{Q_{i,t}\}} \rho^{-1} E_0,i \left[T^{-1}q_i (d - p) \right] - \rho^{-2} \text{Var}_{0,i} \left[T^{-1}q_i (d - p) \right] \]

(82)

\[= \max_{\{Q_{i,t}\}} \rho^{-1} \sum_{j=0}^{T-1} q_{i,j} E_0,i [(d_j - p_j)] - \rho^{-2} T^{-1} \sum_{j=0}^{T-1} q_{i,j}^2 \text{Var}_{0,i} [d_j - p_j] \]

(83)

where the last line follows by imposing the asymptotic independence of \(d \) across frequencies (we analyze the error induced by that approximation below). The utility function is thus entirely separable across frequencies, with the optimization problem for each \(q_{i,j} \) independent from all others.

Taking the first-order condition associated with the last line above for a single frequency, we obtain

\[q_i = \rho \tau_i E [d - p \mid y_i, p] \]

\[= \rho_i \left(f_i^{-1} y_i + \left(a_1 a_2 f_i^{-1} - \tau_i \right) p \right) \]

Summing up all demands and inserting the guess for the price yields

\[z = \int \rho \left(f_i^{-1} y_i + \left(a_1 a_2 f_i^{-1} - \tau_i \right) (a_1 d - a_2 z) \right) di \]

(84)

\[= \int \rho \left(f_i^{-1} d + \left(a_1 a_2 f_i^{-1} - \tau_i \right) (a_1 d - a_2 z) \right) di \]

(85)

Where the second line uses the law of large numbers. Matching coefficients then yields

\[\int \rho \left(a_1 a_2 f_i^{-1} - \tau_i \right) di = -a_2^{-1} \]

(86)

\[\int \rho f_i^{-1} + \rho \left(a_1 a_2 f_i^{-1} - \tau_i \right) a_1 di = 0 \]

(87)

and therefore

\[\rho \int f_i^{-1} di = \frac{a_1}{a_2} \]

(88)

Inserting the expression for \(\tau_i \) into (86) yields

\[a_1 = \frac{\frac{a_1}{a_2} + \rho \left(\frac{a_1}{a_2} \right)^2 f_i^{-1}}{\rho \left(\int f_i^{-1} di + f_i^{-1} + \frac{a_1}{a_2} \right) \left(\frac{a_1}{a_2} \right)^2 f_i^{-1}} \]

(89)
Now define aggregate precision to be
\[f_{\text{avg}}^{-1} \equiv \int_i f_i^{-1} di \] (90)

We then have
\[\tau_i = \frac{a_1^2}{a_2} f_Z^{-1} + f_i^{-1} + f_D^{-1} \] (91)
\[\tau_{\text{avg}} \equiv \int \tau_i di = (\rho f_{\text{avg}}^{-1})^2 f_Z^{-1} + f_{\text{avg}}^{-1} + f_D^{-1} \] (92)

\[a_1 = \tau_{\text{avg}}^{-1} \left(f_{\text{avg}}^{-1} + (\rho f_{\text{avg}}^{-1})^2 f_Z^{-1} \right) = 1 - \frac{f_D^{-1}}{\tau_{\text{avg}}} = \frac{\tau_{\text{avg}} - f_D^{-1}}{\tau_{\text{avg}}} \] (93)
\[a_2 = \frac{a_1}{\rho f_{\text{avg}}^{-1}} \] (94)

C.3 Proof of proposition 1

In the time domain, the solution from Admati (1985) is
\[P = A_1 D - A_2 Z \] (95)
\[A_1 \equiv I - S_{\text{avg}}^{-1} \Sigma_D^{-1} \] (96)
\[A_2 \equiv \rho^{-1} A_1 \Sigma_{\text{avg}} \] (97)

Standard properties of norms yield the following result. If \(|A - B| = \tilde{O} \left(T^{-1/2} \right) \) and \(|C - D| = \tilde{O} \left(T^{-1/2} \right) \), then
\[|cA - cB| = \tilde{O} \left(T^{-1/2} \right) \] (98)
\[|A^{-1} - B^{-1}| = \tilde{O} \left(T^{-1/2} \right) \] (99)
\[|(A + C) - (B + D)| = \tilde{O} \left(T^{-1/2} \right) \] (100)
\[|AC - BD| = \tilde{O} \left(T^{-1/2} \right) \] (101)

In other words, convergence in weak norm carries through under addition, multiplication, and inversion. Since \(A_1 \) is a function of Toeplitz matrices using those operations, it follows that \(|\Lambda' A_1 \Lambda - \text{diag} (a_1)| = \tilde{O} \left(T^{-1/2} \right) \), and the same holds for \(A_2 \).

For the variance of prices, we define
\[R_1 = A_1 - \Lambda \text{diag} (a_1) \Lambda' \] (102)
\[R_2 = A_2 - \Lambda \text{diag} (a_2) \Lambda' \] (103)
\[|\text{Var} [P - \Lambda p]| \leq |R_1 \Sigma_D R'_1| + |R_2 \Sigma_Z R'_2| \leq |R_1 \Sigma_D| |R_1| + |R_2 \Sigma_Z| |R_2| \leq \|\Sigma_D\| |R_1|^2 + \|\Sigma_Z\| |R_2|^2 \leq K \left(|R_1|^2 + |R_2|^2 \right) \]

The first line follows from the triangle inequality; the second line comes from the sub-multiplicativity of the weak norm; the third line uses the fact that, as indicated by Gray (2006), for any two square matrices \(G, H \), \(\|G H\|_2 \leq \|G\| \|H\| \); and the last line follows from the assumption that the eigenvalues of \(\Sigma_D \) and \(\Sigma_Z \) are bounded by some \(K \).

Since the weak norm is invariant under unitary transformations,

\[|R_i| = |\Lambda' R_i \Lambda| = |\Lambda' A_i \Lambda - \text{diag}(a_1)|, \quad i = 1, 2. \]

Therefore,

\[|\text{Var} [P - \Lambda P]| \leq K \left(|\Lambda' A_1 \Lambda - \text{diag}(a_1)|^2 + |\Lambda' A_2 \Lambda - \text{diag}(a_2)|^2 \right) = \mathcal{O} \left(\frac{1}{T} \right) \]

Since \(\|\cdot\| \leq \sqrt{T} |\cdot| \), \(\|\text{Var} [P^c - P]\| = \mathcal{O} \left(T^{-1/2} \right) \).

D Proof of lemma 2

Inserting the optimal value of \(q_{i,j} \) into the utility function, we obtain

\[E_{-1} [U_{i,0}] \equiv \frac{1}{2} E \left[T^{-1} \sum_{j=0}^{T-1} \tau_{i,j} E \left[d_j - p_j \mid y_{i,j}, p_j \right]^2 \right] \]

\(U_{i,0} \) is utility conditional on an observed set of signals and prices. \(E_{-1} [U_{i,0}] \) is then the expectation taken over the distributions of prices and signals.

\(\text{Var} [E \left[d_j - p_j \mid y_{i,j}, p_j \right]] \) is the variance of the part of the return on portfolio \(j \) explained by \(y_{i,j} \) and \(p_j \), while \(\tau_{i,j}^{-1} \) is the residual variance. The law of total variance says

\[\text{Var} [d_j - p_j] = \text{Var} [E \left[d_j - p_j \mid y_{i,j}, p_j \right]] + E \left[\text{Var} [d_j - p_j \mid y_{i,j}, p_j] \right] \]

where the second term on the right-hand side is just \(\tau_{i,j}^{-1} \) and the first term is \(E \left[\text{Var} [d_j - p_j \mid y_{i,j}, p_j]^2 \right] \) since everything has zero mean. The unconditional variance of returns is

\[\text{Var} [d_j - p_j] = (1 - a_{1,j})^2 f_{D,j} + \frac{a_{1,j}^2}{(pf_{avg,j})^2} f_{Z,j} \]
So then
\[E_{-1}[U_{i,0}] = \frac{1}{2} T^{-1} \sum_{j=0}^{T-1} \left((1 - a_{1,j})^2 f_{D,j} + \frac{a^2_{1,j}}{(\rho f^{-1}_{avg,j})^2} f_{Z,j} \right) \tau_{i,j} - \frac{1}{2} \] (113)

We thus obtain the result that agent i’s expected utility is linear in the precision of the signals that they receive (since \(\tau_{i,j} \) is linear in \(f^{-1}_{i,j} \)).

Furthermore,
\[(1 - a_{1,j})^2 f_{D,j} + \frac{a^2_{1,j}}{(\rho f^{-1}_{avg,j})^2} f_{Z,j} = \tau^{-2}_{avg,j} f^{-1}_{D,j} + \rho^{-2} f^{-2}_{avg,j} \tau^{-2}_{avg,j} \left(\tau_{avg,j} - f^{-1}_{D,j} \right) f_{Z,j} \] (114)
\[= \tau^{-2}_{avg,j} f^{-1}_{D,j} + \rho^{-2} \tau_{avg,j} \left(\rho^2 f^{-1}_{avg,j} f^{-1}_{Z,j} + 1 \right)^2 f_{Z,j} \] (115)
\[= \tau^{-2}_{avg,j} \left(f^{-1}_{D,j} + \rho^{-2} \left(\rho^2 f^{-1}_{avg,j} f^{-1}_{Z,j} + 1 \right)^2 f_{Z,j} \right) \] (116)

So
\[E_{-1}[U_{i,0}] = \frac{1}{2} T^{-1} \sum_{j=0}^{T-1} \tau^{-2}_{avg,j} \left(f^{-1}_{D,j} + \rho^{-2} \left(\rho^2 f^{-1}_{avg,j} f^{-1}_{Z,j} + 1 \right)^2 f_{Z,j} \right) \left(\rho f^{-1}_{avg,j} \right)^2 f^{-1}_{Z,j} + f^{-1}_{i,j} + f^{-1}_{D,j} - \frac{1}{2} \] (117)

E Derivation of solution 2

Investors allocate attention, \(f_{i,j}^{-1} \), to maximize \(E_{-1}[U_{i,0}] \) subject to the cost function \(\chi \sum_{j,j'} f^{-1}_{i,j} \) and the constraint that \(f_{i,j}^{-1} = f_{i,j'}^{-1} \). Since the investors are maximizing a linear objective subject to a linear cost, the optimal policy is clearly to allocate attention \(f_{i,j}^{-1} \) only to the frequencies \(j \) at which the marginal benefit is greater than or equal to the marginal cost, which is \(\chi \).

Define the function \(\lambda_j \)
\[\lambda_j (x) \equiv \left((\rho x)^2 f^{-1}_{Z,j} + x + f^{-1}_{D,j} \right)^{-2} \left(f^{-1}_{D,j} + \rho^{-2} \left(\rho^2 x f^{-1}_{Z,j} + 1 \right)^2 f_{Z,j} \right) \]
then \(\lambda_j \left(f^{-1}_{avg,j} \right) \) is the marginal increase in utility from attention to frequency \(j \),
\[\lambda_j \left(f^{-1}_{avg,j} \right) = \frac{dE_{-1}[U_{i,0}]}{df^{-1}_{i,j}} \] (118)

Note that \(d\lambda_j (x) / dx < 0 \). In equilibrium, then, the set of frequencies that investors pay attention to are those such that
\[\lambda_j \left(f^{-1}_{avg,j} \right) \geq \chi \] (119)
So we have

\[f_{\text{avg},j}^{-1} = \lambda_j^{-1} \left(\min \left(\lambda_j(0), \chi \right) \right) \]
(120)

\[f_{\text{avg},j}^{-1} = \int f_{i,j}^{-1} \, di \]
(121)

F Time horizon and investment

At first glance, the assumption of mean-variance utility over cumulative returns over a long period of time \((T \to \infty)\) may appear to give investors an incentive to primarily worry about long-horizon performance, whereas a small value of \(T\) would make investors more concerned about short-term performance. In the present setting, that intuition is not correct – the \(T \to \infty\) limit determines how detailed investment strategies may be, rather than incentivizing certain types of strategies.

The easiest way to see why the time horizon controls only the detail of the investment strategies is to consider settings in which \(T\) is a power of 2. If \(T = 2^k\), then the set of fundamental frequencies is

\[\left\{ \frac{2\pi j}{2^k} \right\}_{j=0}^{2^k-1} \]
(122)

For \(T = 2^{k-1}\), the set of frequencies is

\[\left\{ \frac{2\pi j}{2^{k-1}} \right\}_{j=0}^{2^{k-2}} = \left\{ \frac{2\pi (2j)}{2^k} \right\}_{j=0}^{2^{k-2}} \]
(123)

That is, when \(T\) falls from \(2^k\) to \(2^{k-1}\), the effect is to simply eliminate alternate frequencies. Changing \(T\) does not change the lowest or highest available frequencies (which are always 0 and \(\pi\), respectively). It just discretizes the \([0, \pi]\) interval more coarsely; or, equivalently, it means that the matrix \(\Lambda\) is constructed from a smaller set of basis vectors.

When \(T\) is smaller – there are fewer available basis functions – \(Q\) and its frequency domain analog \(q \equiv \Lambda'Q\) have fewer degrees of freedom and hence must be less detailed. So the effect of a small value of \(T\) is to make it more difficult for an investor to isolate particularly high- or low-frequency fluctuations in fundamentals (or any other narrow frequency range). But in no way does \(T\) cause the investor’s portfolio to depend more on one set of frequencies than another. While we take \(T \to \infty\), we will see that the model’s separating equilibrium features investors who trade at both arbitrarily low and high frequencies, and \(T\) has no effect on the distribution of investors across frequencies.

G Proofs of specialization model predictions

G.1 Results 2 and 3

\[q_i = \rho \left(f_{i}^{-1} y_i + \left(\frac{a_1}{a_2} f_{Z}^{-1} - \tau_1 \right) p \right) \]
The coefficient on $\tilde{\varepsilon}_i$ is f_i^{-1}. Straightforward but tedious algebra confirms that the coefficient on d is

$$\rho \left(f_{avg}^{-1} - f_i^{-1} \right) (a_1 - 1)$$

The coefficient on z is

$$1 + \rho \left(f_i^{-1} - f_{avg}^{-1} \right) a_2$$

We thus have

$$q_i = \rho \left(f_{avg}^{-1} - f_i^{-1} \right) (a_1 - 1) d + \left(1 + \rho \left(f_i^{-1} - f_{avg}^{-1} \right) \right) a_2 z + \rho f_i^{-1} \tilde{\varepsilon}_i$$

(124)

Now note that

$$r = (1 - a_1) d + d_2 z$$

(125)

So then

$$q_i = \rho \left(f_i^{-1} - f_{avg}^{-1} \right) r + \rho f_i^{-1} \tilde{\varepsilon}_i + z$$

(126)

The result on the covariance then follows trivially.

$$\text{std} (\tilde{\varepsilon}_i) = f_i^{1/2}$$

(127)

$$\text{std} (f_i^{-1} \tilde{\varepsilon}_i) = f_i^{-1/2}$$

(128)

G.2 Result 4

Approximating first differences with derivatives, we obtain

$$\Delta Q_{i,t} - \Delta Z_t \approx -\sum_{j=0}^{T/2} \frac{2\pi j}{T} \left[\sin \left(2\pi j t / T \right) \rho \left(\left(f_{i,j}^{-1} - f_{avg,j}^{-1} \right) r_j + f_{i,j}^{-1} \tilde{\varepsilon}_{i,j} \right) \right]$$

$$+ \cos \left(2\pi j t / T \right) \rho \left(\left(f_{i,j}^{-1} - f_{avg,j}^{-1} \right) r_j' + f_{i,j}^{-1} \tilde{\varepsilon}_{i,j}' \right)$$

(129)

where the approximation becomes a true equality as $T \to \infty$. Now if we furthermore use the approximations $f_{i,j}^{-1} - f_{avg,j}^{-1} \approx \bar{f}^{-1} / 2$ and suppose that the exogenous supply process is small enough that it rarely causes a trader’s demand to change signs, then we have

$$|\Delta Q_{i,t}| \approx |\Delta Z_t| + \omega_{j,t} \bar{f}^{-1} \rho \left| \sin \left(\omega_{j,t} t \right) \left(r_{j,t} + \tilde{\varepsilon}_{i,j,t} \right) \right| + \cos \left(\omega_{j,t} t \right) \left(r_{j,t}' + \tilde{\varepsilon}_{i,j,t}' \right)$$

(130)
G.3 Result 5

\[QV \{ q_j \} \equiv \sum_{t=2}^{T} (Q_{i,t} - Q_{i,t-1})^2 \approx \sum_{t=2}^{T} \left(\sum_j \frac{2\pi j}{T} \left[\frac{q_j \sin (2\pi jt/T)}{T} + q_{j'} \cos (2\pi jt/T) \right] \right)^2 \]

\[\approx \sum_{j,j'} (2\pi j)^2 T^{-1} q_j^2 \]

where the equality in the first line is approximate in assuming that \(\cos (2\pi jt/T) - \cos (2\pi j(t - 1)/T) \approx 2\pi j \sin (2\pi jt/T) \) and the same for the differences in the sines. The third line uses the fact that sines of unequal frequencies are orthogonal (it is approximate because \(t = 1 \) is not included in the sum inserts the integral for \(\sin^2 \) and \(\cos^2 \), rather than the exact finite sums. All the approximations here are accurate for large \(T \).

H Proofs of trading restriction results

H.1 Results 6 and 7

If trade by the investors is not allowed at certain frequencies, then obviously markets cannot clear at those frequencies when supply is inelastic. In this section we therefore first solve the model for the case with an upward sloping supply curve and then analyze the effect of eliminating trade on asset prices and returns.

H.1.1 Equilibrium with elastic supply

We now assume that there is exogenous supply on each date of

\[Z_t = \tilde{Z}_t + kP_t \]

where \(k \) is a constant determining the slope of the supply curve. One could imagine allowing \(k \) to differ across frequencies, which would be equivalent to allowing supply to depend on prices on multiple dates (intuitively, maybe supply increases by more when prices have been persistently high than when they are just temporarily high). Here, though, we simply leave \(k \) constant across frequencies. Multiplying by \(\Lambda' \) yields

\[z_j = \tilde{z}_j + k p_j \]

Solving the inference problem as before, we obtain
\[\tau_i \equiv Var [d \mid y_i, p]^{-1} \]
\[= \frac{a_2^2}{a_2^2 f^1_{\hat{Z}} + f_i^{-1} + f_D} \] \hspace{1cm} (136)

and

\[E [d \mid y_i, p] = \tau_i^{-1} \left(f_i^{-1} y_i + \frac{a_1}{a_2^2} f_{\hat{Z}}^{-1} p \right) \] \hspace{1cm} (138)

H.1.2 Demand and equilibrium

The investors’ demand curves are again

\[q_i = \rho_i \left(f_i^{-1} y_i + \left(\frac{a_1}{a_2^2} f_{\hat{Z}}^{-1} - \tau_i \right) p \right) \]

Summing up all demands and inserting the guess for the price process yields

\[\bar{z} + k (a_1 d - a_2 \bar{z}) = \int_i \rho \left(f_i^{-1} d + \left(\frac{a_1}{a_2^2} f_{\hat{Z}}^{-1} - \tau_i \right) (a_1 d - a_2 \bar{z}) \right) di \]

Matching coefficients yields

\[\int_i \rho \left(\frac{a_1}{a_2^2} f_{\hat{Z}}^{-1} - \tau_i \right) di = -a_2^{-1} (1 - ka_2) \] \hspace{1cm} (140)

\[\int_i \rho f_i^{-1} + \rho \left(\frac{a_1}{a_2^2} f_{\hat{Z}}^{-1} - \tau_i \right) a_1 di = ka_1 \]

Combining those two equations, we have

\[\rho f_{\text{avg}}^{-1} = a_1 \left(k + a_2^{-1} (1 - ka_2) \right) \]
\[= \frac{a_1}{a_2} \] \hspace{1cm} (142)

\[a_1 = \frac{f_{\text{avg}}^{-1} + \left(\rho f_{\text{avg}}^{-1} \right)^2 f_{\hat{Z}}^{-1}}{\tau_{\text{avg}} + \rho^{-1} k} \] \hspace{1cm} (144)

\[= \frac{\tau_{\text{avg}} - f_D^{-1}}{\tau_{\text{avg}} + \rho^{-1} k} \] \hspace{1cm} (145)

\[a_2 = \frac{a_1}{\rho f_{\text{avg}}} \] \hspace{1cm} (146)
H.1.3 Utility

As before, the contribution to optimized utility from frequency j is

$$\left((1 - a_{1,j})^2 f_{D,j} + \frac{a_{1,j}^2}{(\rho f_{avg,j}^{-1})^2} f_{Z,j} \right) \tau_{i,j}$$ (147)

Furthermore,

$$\left((1 - a_{1,j})^2 f_{D,j} + \frac{a_{1,j}^2}{(\rho f_{avg,j}^{-1})^2} f_{Z,j} \right)^2 = \left(\frac{\rho^{-1}k + f_{D,j}^{-1}}{\tau_{avg} + \rho^{-1}k} \right)^2 f_{D,j} + \rho^{-2} f_{avg,j} \left(\frac{\tau_{avg} - f_{D,j}^{-1}}{\tau_{avg} + \rho^{-1}k} \right)^2 f_{Z,j}$$ (148)

which equals

$$\left(\tau_{avg} + \rho^{-1}k \right)^{-2} \left((\rho^{-1}k + f_{D,j}^{-1})^2 f_{D,j} + \rho^{-2} f_{avg,j} \left((\rho f_{avg,j}^{-1})^2 f_{Z,j}^{-1} + f_{avg,j}^{-1} \right)^2 f_{Z,j} \right)$$ (149)

which simplifies to

$$\left(\tau_{avg} + \rho^{-1}k \right)^{-2} \left((\rho^{-1}k + f_{D,j}^{-1})^2 f_{D,j} + \rho^{-2} \left(\rho f_{avg,j} f_{Z,j}^{-1} + 1 \right)^2 f_{Z,j} \right)$$ (150)

So

$$E_{-1}[U_{i,0}] = \frac{1}{2} T^{-1} \sum_{j=0}^{T-1} \left[\left(\tau_{avg,j} + \rho^{-1}k \right)^{-2} \left((\rho^{-1}k + f_{D,j}^{-1})^2 f_{D,j} + \rho^{-2} \left(\rho f_{avg,j} f_{Z,j}^{-1} + 1 \right)^2 f_{Z,j} \right) \times \left(\rho f_{avg,j}^{-1} \right)^2 f_{Z,j}^{-1} + f_{avg,j}^{-1} + f_{D,j}^{-1} \right] - \frac{1}{2}$$ (151)

When there are no active investors and just exogenous supply, we have

$$0 = \tilde{z}_j + kp_j$$ (152)
$$p_j = -k^{-1}\tilde{z}_j$$ (153)
$$r_j = d_j - k^{-1}\tilde{z}_j$$ (154)

We then have

$$f_R = f_D + \frac{f_Z}{k^2}$$ (155)

$$f_{R,0} = f_{D,j} + \frac{f_{Z,j}}{(k + \rho f_{D,j}^{-1})^2}$$ (156)
H.2 Result 9

We have

\[D \mid Y, P \sim N \left(\bar{D}, \Lambda \text{diag} \left(\tau_0^{-1} \right) \Lambda' \right) \]

(157)

where \(\tau_0 \) is a vector of frequency-specific precisions conditional on prices. Now consider some average over \(D, F'D \), where \(F \) is a column vector. Then

\[
\text{Var} (D_t) = 1_t' \Lambda \text{diag} \left(\tau_0^{-1} \right) \Lambda' 1_t
\]

(158)

\[
= (\Lambda' 1_t)' \text{diag} \left(\tau_0^{-1} \right) (\Lambda' 1_t)
\]

(159)

\[
= \sum_{j,j'} \lambda_{t,j}^2 \tau_{0,j}^{-1}
\]

(160)

\[
= \lambda_{t,0}^2 \tau_{0,0}^{-1} + \lambda_{t,T/2}^2 \tau_{0,0}^{-1} + \sum_{n=1}^{T/2-1} \left(\lambda_{t,n}^2 + \lambda_{t,n'}^2 \right) \tau_{0,n}^{-1}
\]

(161)

where \(1_t \) is a vector equal to 1 in its \(t \)th element and zero elsewhere and \(\lambda_{t,j} \) is the \(j \)th trigonometric transform evaluated at \(t \), with

\[
\lambda_{t,j} = \sqrt{2/T} \cos \left(\frac{2\pi j (t - 1)}{T} \right)
\]

(162)

\[
\lambda_{t,j'} = \sqrt{2/T} \sin \left(\frac{2\pi j (t - 1)}{T} \right)
\]

(163)

\[
\lambda_{t,0} = \sqrt{1/T}
\]

(164)

\[
\lambda_{t,T/2} = \sqrt{1/T} \cos \left(\pi (t - 1) \right) = \sqrt{1/T} (-1)^{t-1}
\]

(165)

More generally, then

\[
\text{Var} \left(\frac{1}{s} \sum_{m=0}^{s-1} D_{t+m} \right) = \frac{1}{s^2} \left(\sum_{m=0}^{s-1} 1_{t+m} \right)' \Lambda \text{diag} \left(\tau_0^{-1} \right) \Lambda' \left(\sum_{m=0}^{s-1} 1_{t+m} \right)
\]

(166)

\[
= \frac{1}{s^2} \left(\sum_{m=0}^{s-1} \lambda_{t+m,0} \right)^2 \tau_{0,0}^{-1} + \frac{1}{s^2} \left(\sum_{m=0}^{s-1} \lambda_{t+m,T/2} \right)^2 \tau_{0,T/2}^{-1}
\]

(167)

\[
+ \frac{1}{s^2} \sum_{n=1}^{T/2-1} \left[\left(\sum_{m=0}^{s-1} \lambda_{t+m,n} \right)^2 + \left(\sum_{m=0}^{s-1} \lambda_{t+m,n'} \right)^2 \right] \tau_{0,n}^{-1}
\]

(168)

where \(\tau_{0,n} \) is the frequency-\(n \) element of \(\tau_0 \). For \(0 < n < T/2 \)

\[
\left(\sum_{m=0}^{s-1} \lambda_{t+m,n} \right)^2 + \left(\sum_{m=0}^{s-1} \lambda_{t+m,n} \right)^2 = \sum_{m=0}^{s-1} \sum_{k=0}^{s-1} \frac{2}{T} \begin{bmatrix} \cos \left(2\pi n (t + m - 1) / T \right) \cos \left(2\pi n (t + k - 1) / T \right) \\ \sin \left(2\pi n (t + m - 1) / T \right) \sin \left(2\pi n (t + k - 1) / T \right) \end{bmatrix}
\]

(169)

Now note that

\[
2 \cos (x) \cos (y) + 2 \sin (x) \sin (y) = 2 \cos (x - y)
\]

(170)
So we have
\[
\left(\sum_{m=0}^{s-1} \lambda_{t+m,n} \right)^2 + \left(\sum_{m=0}^{s-1} \lambda_{t+m,n} \right)^2 = 2 \frac{s}{T} \sum_{m=0}^{s-1} \sum_{k=0}^{s-1} \cos \left(\frac{2\pi n}{T} (m-k) \right) = 2 \frac{s}{T} \sum_{m=-(s-1)}^{s-1} s - |m| \cos \left(\frac{2\pi n}{T} m \right)
\]
(171)
\[
= 2 \frac{s}{T} F_s \left(\frac{2\pi n}{T} \right)
\]
(172)
\[
= 2 \frac{s}{T} 1 - \cos \left(\frac{2\pi n}{T} \right)
\]
(173)
where \(F_s \) denotes the \(s \)th-order Fejér kernel. Note that when \(s = T \), the above immediately reduces to zero, since \(\cos (2\pi n) = 0 \). That is the desired result, as an average over all dates should be unaffected by fluctuations at any frequency except zero.

For \(n = 0 \),
\[
\left(\sum_{m=0}^{s-1} f_{t+m,0} \right)^2 = \left(\sum_{m=0}^{s-1} \sqrt{1/T} \right)^2 = \left(\frac{s}{T^{1/2}} \right)^2 = \frac{s}{T} F_s (0)
\]
(175)
\[
= s T \left(\sin \left(\frac{s\pi}{2} \right) \sin \left(\frac{\pi}{2} \right) \right)^2 = \frac{s}{T} F_s (\pi)
\]
(176)
\[
= \frac{s}{T} F_s (\pi)
\]
(177)

Since \(F_s (0) = s \) (technically, this holds as a limit: \(\lim_{x \to 0} F_s (x) = s \)).

For \(n = T/2 \),
\[
\left(\sum_{m=0}^{s-1} f_{t+m,T/2} \right)^2 = \frac{1}{T} \left(\sum_{m=1}^{s} (-1)^m \right)^2 = \begin{cases} \frac{1}{T} \text{ for odd } s \\ 0 \text{ otherwise} \end{cases}
\]
(178)
\[
= \frac{s}{T} \sin \left(\frac{s\pi/2}{s \pi/2} \right)^2 = \frac{s}{T} F_s (\pi)
\]
(179)

So we finally have that
\[
\text{Var} \left(\frac{1}{s} \sum_{m=0}^{t-1} D_{t+m} \right) = \frac{1}{sT} \sum_{j,j'} F_s (\omega_{j,j'}) \tau_{0,j}^{-1}
\]
(180)

I Entropy constraints for attention allocation

We follow Sims (2003) and KVNV in modeling the attention constraint as a limit in the reduction in the entropy of private signals that investors can achieve by conditioning on new information.
Specifically, we assume that investor i faces the constraint:

$$\Delta H_i = H(D) - H(\hat{D}_i) \leq \bar{H},$$

where $H(D)$ denotes the unconditional entropy vector of dividend realizations, $H(\hat{D}_i)$ denotes its entropy conditional on a particular choice of signal precisions, summarized by the variance-covariance matrix Σ_i, and \bar{H} is a scalar.

Let $\Sigma^{-1}_{D,i}$ denote the posterior precision of dividends, and let $\{f_{D,i,j}\}_j$ denote the eigenvalues of this matrix. Using the properties of normal random variables, the change in entropy ΔH_i can be rewritten as:

$$\Delta H_i = \frac{1}{2} \ln \left(\frac{|\hat{\Sigma}^{-1}_{D,i}|}{|\Sigma^{-1}_D|} \right) = \frac{1}{2} \ln \left(\frac{\prod_j f^{-1}_{D,i,j}}{\prod_j f^{-1}_{D,j}} \right).$$

The constraint is therefore equivalent to:

$$\prod_j f^{-1}_{D,i,j} \leq \check{f}^{-1}, \quad \check{f}^{-1} \equiv \exp(2H) \prod_j f^{-1}_{D,j}.$$

Following the same steps as in the linear constraint case for the objective, we can therefore write the investors’ problem as:

$$\max_{\{f^{-1}_{D,j}\}} c + \frac{1}{2T} \sum_{j,j'} \lambda_j \left(f^{-1}_{avg,j} \right) f^{-1}_{D,j,j'} + \text{constants} \quad \text{such that} \quad \prod_j f^{-1}_{D,i,j} \leq \check{f}^{-1}, \quad f^{-1}_{D,i,j} \geq 0,$$

where c is a constant.

Lemma (1), from the main text, allows us to connect the posterior precisions of dividends, $\{f^{-1}_{D,i,j}\}_j$, to the precisions of the signals, through:

$$f^{-1}_{D,i,j} = f^{-1}_{D,j} + f^{-1}_{i,j}.$$

Note that the equality here, which is obtained by pre- and post-multiplying the equality $\Sigma^{-1}_{D,i} = \Sigma^{-1}_D + \Sigma^{-1}_i$ by the matrix Λ defined in the main text, is approximate, in the sense of equation (14) in lemma (1). The constraint $f^{-1}_{i,j} \geq 0$ is then equivalent to the no-forgetting constraint $f^{-1}_{D,i,j} \geq f^{-1}_{D,j}$.

Using this result, we can re-write the attention allocation problem as:

$$\max_{\{f^{-1}_{D,j}\}} c' + \frac{1}{2T} \sum_{j,j'} \lambda_j \left(f^{-1}_{avg,j} \right) f^{-1}_{D,i,j,j'} + \text{constants} \quad \text{such that} \quad \prod_j f^{-1}_{D,i,j} \leq \check{f}^{-1}, \quad f^{-1}_{D,i,j} \geq f^{-1}_{D,j},$$

where $c' = c - \frac{1}{2T} \sum_{j,j'} \lambda_j f^{-1}_{D,j}.$

The objective of the problem is unchanged. The constraint is now concave; therefore, the Lagrangian associated with the problem remains convex. The solution to the individual investors’ attention allocation problem given the marginal utilities $\{\lambda_j\}_j$ is the same as that of the linear cost function case. Namely, individual investors allocate additional attention to frequencies $j \in J$, where J is the set of frequencies.
where $J = \arg \max \lambda_j$; other frequencies receive no attention ($f_{D,i,j}^{-1} = f_{D,j}$).

The fact that the individual attention allocation problem has the same solution then implies that the equilibrium distribution of attention across frequencies will also be the same as in the linear cost case. In particular, the equilibrium is described by the reverse water-filling solution of KVNV: agents are indifferent across all frequencies that receive attention; either one or several such frequencies may exist, depending on the information capacity of agents, as captured by \bar{f}^{-1}.

J Costly learning about prices

J.1 Generic result: no learning from prices

Lemma 3 Assume that learning from prices is costly. At that at time -1, if agent i decides to infer information from prices, then their capacity constraint is:

$$tr(f_i^{-1} + f_p^{-1}) \leq \bar{f}^{-1},$$

where f_p^{-1} is inverse of the variance-covariance matrix of signals contained in prices, and f_i^{-1} is the variance-covariance of the private signals of agent i. On the other hand, if agent i decides not to infer information from prices, then his capacity constraint is:

$$tr(f_i^{-1}) \leq \bar{f}^{-1}.$$

Then, agents always prefer not to learn from prices.

Proof. If agent i has decided not to learn from prices, then at time 0, their posterior distribution over d is:

$$d|y_i \sim N(\mu(y_i), \tau_i^{-1})$$

$$\tau_i^{NP} = f_D^{-1} + f_i^{-1}$$

$$\mu(y_i) = (\tau_i^{NP})^{-1} f_i^{-1} y_i$$

Agent i still observes prices; their first-order condition leads to the demand schedule:

$$q_i = \rho \tau_i^{NP} (\mu(y_i) - p).$$

His time-0 utility is:

$$U_{0,i}^{NP}(y_i; p) = \frac{1}{2\tau} (\mu(y_i) - p)' \tau_i^{NP} (\mu(y_i) - p).$$

(182)

Since τ_i^{NP} is symmetric, this implies:

$$E_{-1,3} \left[U_{0,i}^{NP} \right] = \frac{1}{2\tau} tr(\tau_i^{NP} V_i^{NP}) + \frac{1}{2\tau} (\mu_i^{NP})' \tau_i^{NP} \mu_i^{NP},$$

(183)
where as before:

\[\mu_i^{NP} = E_{-1,i} [\mu(y_i) - p] \]

\[V_i^{NP} = Var_{-1,i} [\mu(y_i) - p] \]

As before, because all fundamentals are mean 0, \(\mu_i = 0 \). Moreover, by the law of total variance:

\[V_i = \left(\text{Var}_{-1,i} [d - p] - (\tau_i^{NP})^{-1} \right) \]

Therefore,

\[E_{-1,i} \left[U_{0,i}^{NP} \right] = \frac{1}{2T} \text{tr}(\tau_i^{NP} V_i) \]

\[= \frac{1}{2T} \text{tr}(\tau_i^{NP} V_{-1}) - \frac{1}{2T} \text{tr}(I) \]

\[= \frac{1}{2T} \text{tr} \left(f^{-1}_i V_{-1} \right) - \frac{1}{2T} \text{tr}(I) + \frac{1}{2T} \text{tr}(f^{-1}_i V_{-1}) \]

(185)

The time-(-1) attention allocation problem of such an agent is therefore:

\[U_{-1,i}^{NP} \left(f^{-1}_{\text{avg}} \right) = -\frac{1}{2} + \frac{1}{2T} \text{tr} \left(f^{-1}_i V_{-1} \right) + \frac{1}{2T} \max_{f^{-1}_i} \text{tr}(f^{-1}_i V_{-1}) \]

s.t. \[f^{-1}_{i,j} \geq 0 \quad \forall j \in [0, ..., T - 1] \]

\[\text{tr}(f^{-1}_i) \leq \tilde{f}^{-1} \]

(186)

For an agent who does learn from prices (but shares the other agent’s ex-ante distribution over \(p \) and \(d \), summarized by \(V_{-1} \)), the attention allocation problem has already been derived; it is given by:

\[U_{-1,i} \left(f^{-1}_{\text{avg}} \right) = -\frac{1}{2} + \frac{1}{2T} \text{tr} \left((f^{-1}_D + f^{-1}_P) V_{-1} \right) + \frac{1}{2T} \max_{f^{-1}_i} \text{tr}(f^{-1}_i V_{-1}) \]

s.t. \[f^{-1}_{i,j} \geq 0 \quad \forall j \in [0, ..., T - 1] \]

\[\text{tr}(f^{-1}_i + f^{-1}_P) \leq \tilde{f}^{-1} \]

(187)

Since \(f^{-1}_i \) is diagonal, \(f^{-1}_i \rightarrow \text{tr}(f^{-1}_i V_{-1}) \) can be thought of as a linear map on \(R^T \). By the Riesz representation theorem, there is \(\lambda \in R^T \) such that \(\forall f^{-1}_i, \text{tr}(f^{-1}_i V_{-1}) = \sum_{j=0}^{T-1} f^{-1}_{i,j} \lambda_j \). Let \(\hat{\lambda} \) denote the element-wise maximum of \(\lambda \). Note, in particular, that:

\[\text{tr}(f^{-1}_P V_{-1}) = \sum_{j=0}^{T-1} f^{-1}_{P,j} \lambda_j. \]

Moreover, after optimization, not learning through prices yields utility:

\[U_{-1,i}^{NP} \left(f^{-1}_{\text{avg}} \right) = -\frac{1}{2} + \frac{1}{2T} \text{tr} \left(f^{-1}_D V_{-1} \right) + \frac{1}{2T} \hat{\lambda} f^{-1}. \]

49
Learning through prices yields utility:

\[
U_{-1,i}(f_{\text{avg}}^{-1}) = -\frac{1}{2} + \frac{1}{2T} \text{tr} \left((f_{D}^{-1} + f_{P}^{-1}) V_{-1} \right) + \frac{1}{2T} \tilde{\lambda} (f_{-1}^{-1} - \text{tr}(f_{P}^{-1}))
\]

The difference between the two is:

\[
U_{-1,i}^{NP}(f_{\text{avg}}^{-1}) - U_{-1,i}(f_{\text{avg}}^{-1}) = \frac{1}{2T} \tilde{\lambda} \text{tr}(f_{P}^{-1}) - \frac{1}{2T} \text{tr}(f_{D}^{-1} V_{-1}) = \frac{1}{2T} \tilde{\lambda} \text{tr}(f_{P}^{-1}) - \frac{1}{2T} \sum_{j=0}^{T-1} f_{P,i}^{-1} \lambda_j
\]

\[
\geq 0
\]

Therefore, the agent always prefer not to learn from prices. ■

J.2 The equilibrium when agents do not learn about prices

Guess:

\[
p = a_3d - a_4z
\]

with \(a_3, a_4\) diagonal matrices of size \(T \times T\). Straightforward derivations lead to:

\[
a_3 = I - (\tau_{\text{avg}} + kI)^{-1} (f_{D}^{-1} + kI)
\]

\[
= (\tau_{\text{avg}} + kI)^{-1} f_{\text{avg}}^{-1}
\]

\[
a_4 = \frac{1}{\rho} a_3 f_{\text{avg}}
\]

\[
= \frac{1}{\rho} (\tau_{\text{avg}} + kI)^{-1}
\]

\[
\tau_{\text{avg}} = f_{\text{avg}}^{-1} + f_{D}^{-1}
\]

\[
\tau_i = f_{i}^{-1} + f_{D}^{-1}
\]

Moreover, expected utility is given by:

\[
E_{-1,i} \left[U_{0,i}^{NP} \right] = C^{NP} + \frac{1}{2T} \text{tr}(V_{-1}^{NP} f_{i}^{-1})
\]

\[
V_{-1}^{NP} = f_{D} \left((I + k f_{D})^2 + \frac{k^2 f_{D}}{\rho^2} \right) (I + k f_{D} + f_{D} f_{\text{avg}}^{-1})^{-2}
\]

\[
C^{NP} = \frac{1}{2T} \text{tr} \left(f_{D}^{-1} V_{-1}^{NP} \right) - \frac{1}{2}
\]

K Calibration

\(T = 1000\)
\[f_D(\omega) = \frac{1}{4} \left| 1 - \frac{1}{2} e^{i\omega} \right|^{-2} + 1 - 0.55 \cos(2\omega) + \frac{7}{16} \left| 1 + \frac{1}{2} e^{i\omega} \right|^{-2} \]

\[f_Z(\omega) = \frac{1}{10} \left| 1 - \frac{1}{2} e^{i\omega} \right|^{-2} \]

\[\rho = 1 \]
Figure 1: Optimal information acquisition and waterfilling
Figure 2: Example investor’s demand
Figure 3: Effects of restricting high-frequency trade
Figure 4: Weights across frequencies and time

Fejér kernel for different values of n

$n=1$
$n=2$
$n=5$
$n=10$
Figure 5: Persistence of the churn rate over time

Figure 6: Out-performance of institution holdings at different horizons

Difference in differences equals 0.0054 \([t=2.18]\) (CAPM) and 0.0047 \([t=2.13]\) (Fama-French)