Dividend Dynamics, Learning, and Expected Stock Index Returns

September 28, 2016

Abstract

We show that, in a frictionless and efficient market, an asset pricing model that better describes investors’ behavior should better forecast stock index returns. We propose a dividend model that predicts, out-of-sample, 31.3% of the variation in annual dividend growth rates (1976-2015). Further, when learning about dividend dynamics is incorporated into a long-run risks model, the model predicts, out-of-sample, 22.4% of the variation in annual stock index returns (1976-2015). This supports the view that both investors’ aversion to long-run risks and learning about these risks are important in determining asset prices and expected returns.
The average return on equities has been substantially higher than the average return on risk free bonds over long periods of time. Between 1946 and 2015, the S&P500 earned 63 basis points per month more than 30 days T-bills (i.e. over 7% annualized). Over the years, many dynamic equilibrium asset pricing models have been proposed in the literature to understand the nature of risks in equities that require such a large premium and why risk free rates are so low. A common feature in most of these models is that risk premium on equities does not remain constant over time, but varies in a systematic and stochastic manner. A large number of academic studies have found support for such predictable variation in equity premium.\footnote{See, among others, Campbell and Shiller (1988b), Fama and French (1993), Lamont (1998), Baker and Wurgler (2000), Lettau and Ludvigson (2001), Campbell and Vuolteenaho (2004), Lettau and Ludvigson (2005), Polk, Thompson, and Vuolteenaho (2006), Ang and Bekaert (2007), van Binsbergen and Koijen (2010), Kelly and Pruitt (2013), van Binsbergen, Hueskes, Koijen, and Vrugt (2013), Li, Ng, and Swaminathan (2013), and Da, Jagannathan, and Shen (2014).} This led Lettau and Ludvigson (2001) to conclude "it is now widely accepted that excess returns are predictable by variables such as price-to-dividend ratios."

Goyal and Welch (2008) argue that variables such as price-to-dividend ratios, although successful in predicting stock index returns in-sample, fail to predict returns out-of-sample. The difference between in-sample and out-of-sample prediction is the assumption made on investors’ information set. Traditional dynamic equilibrium asset pricing models assume that, while investors’ beliefs about investment opportunities and economic conditions change over time and drive the variation in stock index prices and expected returns, these investors nevertheless have complete knowledge of the parameters describing the economy. For example, these models assume that they know the true model and model parameters governing consumption and dividend dynamics. However, as Hansen (2007) argues, "this assumption has been only a matter of analytical convenience" and is unrealistic in that it requires us to "burden the investors with some of the specification problems that challenge the econometrician". Motivated by this insight, a recent but growing literature has focused on the role of learning in asset pricing models. Timmermann (1993) and Lewellen and Shanken (2002) demonstrate, via simulations, that parameter uncertainty can lead to excess predictability and volatility in stock returns. Johannes, Lochstoer, and Mou (2016) propose a Markov-switching model for consumption dynamics and show that learning about the consumption process is reflected in asset prices and expected returns. Croce, Lettau, and Ludvigson (2014) show that a bounded rationality limited information long-run risks model can generate a downward-sloping equity term structure. Collin-Dufresne, Johannes, and Lochstoer (2016) provide the theoretical foundation that
parameter learning can be a source of long-run risks under Bayesian learning.2 We add to this literature.

The main contributions of our paper, which distinguish it from the existing literature on the interaction between learning and asset pricing, is as follows. First, we show that, when equity markets are frictionless and efficient, an asset pricing model that is closer to the true asset pricing model, i.e. the model that better describes investors’ behavior, should better forecast stock index returns. This provides the theoretical foundation for the economic significance of an asset pricing model’s performance in forecasting annual stock index returns as a measure to assess that model. Then, we show that, when learning about dividend dynamics is incorporated into a long-run risks model, the model predicts as much as 22.4 percent of the variation in annual stock index returns between 1976 and 2015 out-of-sample. This not only addresses the Goyal and Welch (2008) critique and significantly revises upward the degree of return predictability in the existing literature, but also lends support to both investors’ aversion to long-run risks and learning about these risks playing important roles in determining asset prices and expected returns.34

To study how learning about dividend dynamics affects stock index prices and expected returns, we first need a dividend model that is able to realistically capture how investors form expectations about future dividends. Inspired by Campbell and Shiller (1988b), we put forth a model of dividend growth rates that incorporates information in corporate payout policy into the latent variable model used in Cochrane (2008), van Binsbergen and Koijen (2010), and others. Our model explains serial correlations in annual dividend growth rates up to 5 years. Further, our model predicts 42.8 percent of the variation in annual dividend growth rates between 1946 and 2015 in-sample and predicts 33.4 percent of the variation in annual dividend growth rates between 1976 and 2015 out-of-sample. Based on these results, we comfortably reject the null that expected dividend growth rates are constant and demonstrate that the superior performance of our dividend model over alternative models in predicting annual dividend growth rates is significant.

We document that uncertainties about parameters in our dividend model, especially parameters surrounding the persistent latent variable, are high and resolve slowly. That is, these uncertainties remain substantial even at the end of our 70 years data sample,

2Instead of learning, an alternative path that researchers have taken is through introducing preferences shocks. See Albuquerque, Eichenbaum, and Rebelo (2015).

3Our paper is also consistent with the argument of Lettau and Van Nieuwerburgh (2008) that steady-state economic fundamentals, or in our interpretation, investors beliefs about these fundamentals, vary over time and these variations are critical in determining asset prices and expected returns.

4Following the existing literature, we adopt the stock index as a proxy for the market portfolio.
suggesting that learning about dividend dynamics is a difficult and slow process. Further, when our dividend model is estimated at each point in time based on data available at the time, model parameter estimates fluctuate, some significantly, over time as more data become available. In other words, if investors estimate dividend dynamics using our model, we expect their beliefs about the parameters governing the dividend process to vary significantly over time. We then show that these changes in investors’ beliefs can have large effects on their expectations of future dividends. Through this channel, changes in investors’ beliefs about the parameters governing the dividend process can contribute significantly to the variation in stock prices and expected returns.

We provide evidence that investors behave as if they learn about dividend dynamics and price stocks using our model. First, we define stock yields as discount rates that equate the present value of expected future dividends to the current prices of the stock index. From the log-linearized present value relationship of Campbell and Shiller (1988), we write stock yields as a function of price-to-dividend ratios and long-run dividend growth expectations. We show that, assuming that investors learn about dividend dynamics, these stock yields explain 14.9 percent of the variation in annual stock index returns between 1976 and 2015. In comparison, stock yields, assuming full information, predict only 9.9 percent of the same variation. Next, we embed our dividend model into a dynamic equilibrium asset pricing model that features Epstein and Zin (1989) preferences, which capture preferences for the early resolution of uncertainty, and consumption dynamics from the long-run risks model of Bansal and Yaron (2004). We refer to this model as our long-run risks model. We find that, assuming learning, our long-run risks model predicts 22.4 percent of the variation in annual stock index returns between 1976 and 2015. Learning accounts for over half of the 22.4 percent. Both the model’s forecasting performance and the incremental contribution of learning to this performance are significant.

Our results suggest that, aside from a common persistent component in consumption and dividend growth rates, the assumption that investors hold Epstein and Zin (1989) preferences with early resolution of uncertainty, a critical component of any long-run risks model, is essential to the model’s strong performance in predicting annual stock index returns. More specifically, we find that, replacing Epstein and Zin (1989) preferences with constant relative risk aversion (CRRA) preferences, R^2-square value for predicting annual stock index returns, between 1976 and 2015, drops from 6.4 percent to 4.9 percent for the case of full information and from 22.4 percent to 11.1 percent after learning is
incorporated. This substantial deterioration in forecasting performance is evidence that
the assumption of early resolution of uncertainty, as modeled through Epstein and Zin
(1989), brings us steps closer to discovering the true asset pricing model.

We follow Cogley and Sargent (2008), Piazzesi and Schneider (2010), and Johannes,
Lochstoer, and Mou (2016), and define learning based on the anticipated utility of Kreps
(1998), where agents update using Bayes’ law but optimize myopically in that they do not
take into account uncertainties associated with learning in their decision making process.
That is, anticipated utility assumes agents form expectations not knowing that their
beliefs will continue to evolve going forward in time as the model keeps updating. Given
the relative complexity of our long-run risks model and the multi-dimensional nature of
learning, we find that solving our model with parameter uncertainties as additional risk
factors is too computationally prohibitive.\(^5\) Therefore, we adopt the anticipated utility
approach as the more convenient alternative.

The rest of this paper is as follows. In Section 1, we introduce our dividend model
and evaluate its performance in capturing dividend dynamics. In Section 2, we show that
investors’ beliefs about dividend model parameters can vary significantly over time as a
result of Kreps’ learning about dividend dynamics. In Sections 3, we show that learning
accounts for a significant fraction of the variation in both long-run and short-run expected
stock index returns. In Section 4, we first discuss how an asset pricing model’s performance
in predicting stock index returns can be used as a criterion to evaluate that model. Then,
we demonstrate that, between 1976 and 2015, a model that incorporates Kreps’ learning
into a long-run risks model predicts 22.4 percent of the variation in annual stock index
returns and explain why such a finding provides us insight into investor preferences and
the role of learning in describing investors’ behavior. In Section 5, we conclude.

1 The Dividend Model

In this section, we present a model for dividend growth rates that extends the latent
variable model of Cochrane (2008), van Binsbergen and Koijen (2010), and others by
incorporating information in corporate payout policy into the model. The inclusion of
corporate payout policy in explaining dividend dynamics is inspired by Campbell and
Shiller (1988b), who show that cyclical-adjusted price-to-earnings (CAPE) ratios, defined
\(^5\)Collin-Dufresne, Johannes, and Lochstoer (2016) provide the theoretical foundation for studying
uncertainties about model parameters as priced risk factors.
as the log ratios between real prices and real earnings averaged over the past decade, can predict future growth rates in dividends.

We begin with the latent variable model used in Cochrane (2008), van Binsbergen and Koijen (2010), and others. Let D_t be nominal dividend of the stock index, $d_t = \log(D_t)$, and $\Delta d_{t+1} = d_{t+1} - d_t$ be log dividend growth rate. The model is described as:

$$\Delta d_{t+1} - \mu_d = x_t + \sigma_d \varepsilon_{d,t+1}$$
$$x_{t+1} = \rho x_t + \sigma_x \varepsilon_{x,t+1}$$

$$\left(\begin{array}{c} \varepsilon_{d,t+1} \\ \varepsilon_{x,t+1} \end{array} \right) \sim \text{ i.i.d. } \mathcal{N}\left(0, \left(\begin{array}{cc} 1 & \lambda_{dx} \\ \lambda_{dx} & 1 \end{array} \right) \right),$$

where time-t is defined in years to control for potential seasonality in dividend payments. Following van Binsbergen and Koijen (2010), we fit our model to the nominal dividend process. As shown in Boudoukh, Michaely, Richardson, and Roberts (2007), equity issuance and repurchase tend to be more sporadic and random compared to cash dividends. For this reason, we focus on modeling the cash dividend process. In (1), expected dividend growth rates are a function of the latent variable x_t, the unconditional mean μ_d of dividend growth rates, and the persistence coefficient ρ of the latent variable x_t:

$$E_t [\Delta d_{t+s+1}] = \mu_d + \rho^s x_t, \ \forall s \geq 0. \quad (2)$$

Before we introduce corporate payout policy into this model, we first recall the dividend model used in Campbell and Shiller (1988b). Define p_t as log nominal price of the stock index, e_t as log nominal earnings, π_t as log consumer price index, and, following Campbell and Shiller (1988b), consider the following vector-autoregression for annual nominal dividend growth rates, log price-to-dividend ratios, and CAPE ratios:

$$\left(\begin{array}{c} \Delta d_{t+1} \\ p_{t+1} - d_{t+1} \\ p_{t+1} - \bar{e}_{t+1} \end{array} \right) = \left(\begin{array}{ccc} b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \\ b_{30} & b_{31} & b_{32} \end{array} \right) \left(\begin{array}{c} \Delta d_t \\ p_t - d_t \\ p_t - \bar{e}_t \end{array} \right) + \left(\begin{array}{c} \sigma_d \varepsilon_{d,t+1} \\ \sigma_{(p-d)} \varepsilon_{(p-d),t+1} \\ \sigma_{(p-e)} \varepsilon_{(p-e),t+1} \end{array} \right),$$

$$\left(\begin{array}{c} \varepsilon_{d,t+1} \\ \varepsilon_{(p-d),t+1} \\ \varepsilon_{(p-e),t+1} \end{array} \right) \sim \text{ i.i.d. } \mathcal{N}\left(0, \left(\begin{array}{ccc} 1 & \lambda_{12} & \lambda_{13} \\ \lambda_{12} & 1 & \lambda_{23} \\ \lambda_{13} & \lambda_{23} & 1 \end{array} \right) \right).$$

(3)
where, as in Campbell and Shiller (1988b), CAPE ratio is defined as:

\[pt - \bar{e}_t = pt - \left(\pi_t + \frac{1}{10} \sum_{s=1}^{10} (e_{t-s+1} - \pi_{t-s+1}) \right). \]

(4)

Estimates of \(b_{10}, b_{11}, b_{12}, \) and \(b_{13} \) from (3), based on data between 1946 and 2015, are reported in the first row of Table 1.\(^6\) We see that both price-to-dividend ratios and CAPE ratios have significant effects on future dividends, but in the opposite direction. That is, increases in price-to-dividend ratios predict increases in future dividend growth rates, but increases in CAPE ratios predict decreases in future dividend growth rates. Further, we note from Table 1 that \(b_{12} + b_{13} = 0 \) cannot be statistically rejected. For this reason, we restrict \(b_{13} = -b_{12} \) and re-write (3) as:

\[\Delta d_{t+1} = \beta_0 + \beta_1 \Delta d_t + \beta_2 (\bar{e}_t - d_t) + \sigma_d \epsilon_{d,t+1}, \epsilon_{d,t+1} \sim i.i.d \ N(0,1). \]

(5)

Stock index price \(p_t \) does not appear in (5). Instead, dividend growth rates over the next year are a function of some measure of retention ratios, i.e. \(\bar{e}_t - d_t \). Estimated coefficients from (5) are in the second row of Table 1. We see that the \(\beta_2 \) estimate is significant, suggesting that expected dividend growth rates respond to corporate payout policy. High earnings relative to dividends implies that firms have been retaining earnings in the past and so they are expected to pay more dividends in the future.

\begin{table}[h]
\centering
\begin{tabular}{cccc}
\hline
& \(b_{10} \) & \(b_{11} \) & \(b_{12} \) & \(b_{13} \) \\
\hline
\(\beta_0 \) & -0.004 & 0.478*** & 0.154*** & -0.167*** \\
& (0.061) & (0.111) & (0.058) & (0.067) \\
\hline
\(\beta_1 \) & -0.038 & 0.482*** & 0.143*** \\
& (0.028) & (0.111) & (0.056) \\
\hline
\end{tabular}
\caption{Campbell and Shiller (1988b) Betas for Predicting Dividend Growth Rates: This table reports coefficients from predicting annual nominal dividend growth rates using (3) and (5), based on data between 1946 and 2015. Newey and West (1987) adjusted standard errors are reported in parentice. Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using *, **, and ***.}
\end{table}

We extend (1) based on this insight that corporate payout policy contains information...
about future dividends. Define $\Delta e_{t+1} = e_{t+1} - e_t$ as log nominal earnings growth rate and $q_t = e_t - d_t$ as log earnings-to-dividend ratio, i.e. retention ratio. We write our dividend model as the following system of equations:

$$
\begin{align*}
\Delta d_{t+1} - \mu_d &= x_t + \phi (q_t - \mu_q) + \sigma_d \epsilon_{d,t+1}, \\
x_{t+1} &= \rho x_t + \sigma_x \epsilon_{x,t+1}, \\
q_{t+1} - \mu_q &= \theta (q_t - \mu_q) + \sigma_q \epsilon_{q,t+1}, \\
\begin{pmatrix}
\epsilon_{d,t+1} \\
\epsilon_{x,t+1} \\
\epsilon_{q,t+1}
\end{pmatrix} &\sim \text{i.i.d. } \mathcal{N} \left(\begin{pmatrix} 1 \\
\lambda_{dx} \\
\lambda_{dq}
\end{pmatrix} , \begin{pmatrix} 1 \\
\lambda_{dx} & \lambda_{xq} \\
\lambda_{dq} & \lambda_{xq}
\end{pmatrix} \right).
\end{align*}
\tag{6}
$$

In our model, dividend growth rates over the next year are a linear combination of three components. First, they consist of the latent variable x_t, which follows a stationary AR[1] process. Second, they are affected by changes in retention ratios. That is, we expect firms to pay more future dividends if they have retained more earnings. Third, they consist of white noises $\epsilon_{d,t}$. For convenience, we model retention ratios as an AR[1] process, and assuming that it is stationary implies that dividend and earnings growth rates have the same unconditional mean μ_d. In (6), expected dividend growth rates are:

$$
E_t[\Delta d_{t+s+1}] = \mu_d + \rho^s x_t + \phi \theta^s(q_t - \mu_q), \; \forall s \geq 0.
\tag{7}
$$

This means that, aside from the latent variable x_t and retention ratios, expected dividend growth rates are a function of the unconditional mean μ_d of dividend growth rates, the unconditional mean μ_q and persistence θ of retention ratios, the persistence ρ of the latent variable x_t, and coefficient ϕ that connects corporate payout policy to dividend dynamics. The earnings process is not modeled explicitly in (6). However, because earnings growth rates are, by definition, a function of dividend growth rates and retention ratios, i.e.:

$$
\Delta e_{t+1} = (q_{t+1} - q_t) + \Delta d_{t+1},
\tag{8}
$$

and because both dividend growth rates and retention ratios are modeled in (6), we can solve for earnings growth rates as:

$$
\begin{align*}
\Delta e_{t+1} &= \mu_d + x_t + (\theta + \phi - 1)(q_t - \mu_q) + \sigma_e \epsilon_{e,t+1}, \\
\epsilon_{e,t+1} &\sim \mathcal{N}(0,1),
\end{align*}
\tag{9}
$$

where $\sigma_e = \sqrt{\sigma_d^2 + \sigma_q^2 + 2\sigma_d \sigma_q \lambda_{dq}}$ and $\epsilon_{e,t+1} = \frac{\sigma_d \epsilon_{d,t+1} + \sigma_q \epsilon_{q,t+1}}{\sigma_e}$.

A type of model commonly used to forecast macroeconomic variables is a Markov-
switching model. For example, the Markov-switching model is used to describe consumption dynamics in Johannes, Lochstoer, and Mou (2016). The same model can be applied to dividend growth rates:

\[\Delta d_{t+1} = \mu_d(s_t) + \sigma_d(s_t)\varepsilon_{d,t+1}, \quad s_t \in \{1, 2, 3\}, \]

\[p(s_{t+1} = i|s_t = j) = \phi_{ij}, \]

\[\phi_{ij} \in [0, 1] \quad \forall i, j \in \{1, 2, 3\}, \sum_{i=1}^{3} \phi_{ij} = 1 \quad \forall j \in \{1, 2, 3\}. \quad (10) \]

That is, \(p(s_{t+1} = i|s_t = j) \) is the probability that the economy transfers from state \(j \in \{1, 2, 3\} \) to state \(i \in \{1, 2, 3\} \), and \(\mu_d(s_t) \) and \(\sigma_d(s_t) \) are the mean and volatility of dividend growth rates in a particular state.\(^7\) A key feature of this model that is not present in dividend models discussed so far is that it is able to incorporate, albeit in a restricted manner, both regime changes and stochastic volatility. We adopt this model as another baseline and compare it against our dividend model in our subsequent analysis.

1.1 Data and Estimation

Due to the lack of reliable historical earnings data on the CRSP value-weighted market index, we use the S&P500 index as the proxy for the market portfolio. That is, throughout this study, data on prices, dividends, and earnings are from the S&P500 index. These data can be found on Prof. Robert Shiller’s website.

We compute the likelihood of our dividend model (i.e. (6) and (9)) using Kalman filters (Hamilton (1994)) and estimate model parameters,

\[\Theta = \{\mu_d, \phi, \sigma_d, \rho, \sigma_x, \mu_q, \theta, \sigma_q, \lambda_{dx}, \lambda_{dq}, \lambda_{xq}\} \quad (11) \]

based on maximum-likelihood. See Appendix A.1 for details. Table 2 reports model parameter estimates based on overlapping annual data between 1946 and 2015. Standard errors are based on bootstrap simulation, described in Appendix A.2. Because \(\lambda_{dx} \) and \(\lambda_{xq} \) are not significantly different from zero, we force these correlation parameters to be zeros in our subsequent analysis for the purpose of parameter reduction.\(^8\) Previous

\(^7\)An alternative approach of incorporating time varying parameters and stochastic volatility is by estimating parameters in a dividend model at each point in time using a rolling-window of historical data. We explore this option in the Online Appendix.

\(^8\)In the Online Appendix, we replicate our main results using a data sample that stretches to prior to
works have suggested a regime shift in dividend dynamics before and after World War II. Fama and French (1988) note that dividends are more smoothed in the post-war period. Chen, Da, and Priestley (2012) argue that the lack of predictability in dividend growth rates by price-to-dividend ratios in the post-war period is attributable to this dividend smoothing behavior. Consistent with our intuition, coefficient ϕ that connects corporate payout policy to dividend dynamics is estimated to be positive and significant. That is, high retention ratios imply high future dividend growth rates. The annual persistence of retention ratios is estimated to be 0.302. The latent variable x_t is estimated to be more persistent at 0.496. So there is a moderate level of persistence in dividend growth rates between 1946 and 2015 based on estimates from our model.

<table>
<thead>
<tr>
<th>μ_d</th>
<th>ϕ</th>
<th>σ_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.060</td>
<td>0.139</td>
<td>0.025</td>
</tr>
<tr>
<td>(0.015)</td>
<td>(0.018)</td>
<td>(0.013)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ρ</th>
<th>σ_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.496</td>
<td>0.046</td>
</tr>
<tr>
<td>(0.160)</td>
<td>(0.009)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>μ_q</th>
<th>θ</th>
<th>σ_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.722</td>
<td>0.302</td>
<td>0.276</td>
</tr>
<tr>
<td>(0.047)</td>
<td>(0.116)</td>
<td>(0.027)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>λ_{dx}</th>
<th>λ_{dq}</th>
<th>λ_{xq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.016</td>
<td>0.858</td>
<td>0.034</td>
</tr>
<tr>
<td>(0.133)</td>
<td>(0.032)</td>
<td>(0.128)</td>
</tr>
</tbody>
</table>

Table 2: **Dividend Model Parameter Estimates**: This table reports estimated parameters from our dividend model, based on data between 1946 and 2015. Bootstrap simulated standard errors are reported in parentheses. Simulation is based on 100,000 iterations.

To provide a more intuitive visualization of how various types of shocks to dividend growth rates at a given time affect investors’ expectations of dividends going forward, we consider an one unit change to $\epsilon_{d,t}, \epsilon_{x,t}, \epsilon_{q,t}$ and show how such a change affects both dividend growth rates immediately and expected dividend growth rates up to 10 years into the future, i.e. time-t to time-$(t + 10)$. We report these impulse response functions in Figure 1. We see that $\epsilon_{d,t}$ affects dividend growth rates instantly but its effect does not

the Great Depression, i.e. 1930-2015.
persist into the future, whereas \(\epsilon_{x,t}\) and \(\epsilon_{q,t}\) affect dividend growth rates with a one-period lag but their effects are persistent over time.

Figure 1: Impulse Response Functions on Shocks that Affect Expected Dividend Growth Rates. This figure plots the changes to dividend growth rates immediately and expected dividend growth rates over the next 10 years due to a unit change in shocks to dividend growth rates: \(\epsilon_{d,t}\), \(\epsilon_{x,t}\), and \(\epsilon_{q,t}\).

In Table 3, we report serial correlations, up to 5 years, for annual dividend growth rates and dividend growth rate residuals, which we define as the difference between dividend growth rates and our dividend model’s expected rates, along with Ljung and Box (1978) \(Q\)-statistics for testing if dividend growth rates and dividend growth rate residuals are serially correlated. We also report serial correlations and \(Q\)-statistics for dividend growth rate residuals of one of the baseline dividend models described in (1), (3), and (10). We find that our model is reasonably successful at matching serial correlations in dividend growth rates for up to 5 years. That is, our model’s dividend growth rate residuals appear to be serially uncorrelated. In comparison, the baseline models all perform considerably worse along this dimension.

In the first column of Table 4, we report our dividend model’s performance in predicting annual dividend growth rates. Between 1946 and 2015, our model predicts 42.8 percent of the variation in annual dividend growth rates, which is a significant improvement over the baseline models. Given these statistics are in-sample, we know that at least a part of this improved forecasting performance comes from adding more parameters to existing models and is thus mechanical. Thus, to address the concern that our model overfits the
Table 3: Serial Correlations in Dividend Growth Rates and Dividend Growth Rate Residuals: This table reports the 1, 2, 3, 4, and 5 years serial correlations for annual nominal dividend growth rates and dividend growth rate residuals of our dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. Baseline 1), the dividend model in Campbell and Shiller (1988b) (i.e. Baseline 2), or a 3-state Markov-switching model (i.e. Baseline 3), based on data between 1946 and 2015. Also reported are the Ljung and Box (1978) Q-statistics for testing if dividend growth rates and growth rate residuals are serially correlated. p-values for Q-statistics are reported in square parentice.

<table>
<thead>
<tr>
<th>Serial Correlation (Years)</th>
<th>J&L</th>
<th>Baseline 1</th>
<th>Baseline 2</th>
<th>Baseline 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.435</td>
<td>-0.029</td>
<td>0.122</td>
<td>0.088</td>
</tr>
<tr>
<td>2</td>
<td>-0.063</td>
<td>-0.122</td>
<td>-0.200</td>
<td>-0.208</td>
</tr>
<tr>
<td>3</td>
<td>-0.274</td>
<td>-0.019</td>
<td>-0.208</td>
<td>-0.185</td>
</tr>
<tr>
<td>4</td>
<td>-0.296</td>
<td>0.057</td>
<td>-0.132</td>
<td>-0.091</td>
</tr>
<tr>
<td>5</td>
<td>-0.209</td>
<td>0.184</td>
<td>-0.063</td>
<td>-0.032</td>
</tr>
</tbody>
</table>

| Q-Statistics | 34.72 | 4.623 | 10.38 | 8.221 | 26.76 |
| | [0.000] | [0.464] | [0.065] | [0.144] | [0.000] |

data, we also assess our model based on how it predicts annual dividend growth rates out-of-sample. That is, instead of estimating model parameters based on the full data sample, we predict dividend growth rates at each point in time using dividend model parameters estimated based on data available at the time. Forecasting performance of a model \mathcal{M}_i is then evaluated using out-of-sample R-square value as defined in Goyal and Welch (2008):

$$R^2(\mathcal{M}_i) = 1 - \frac{1}{T - T_0 + 1} \sum_{t=T_0}^{T-1} \left(\Delta d_{t+1} - E_t[\Delta d_{t+1} | \mathcal{M}_i] \right)^2,$$

(12)

where $\hat{\mu}_{d,t}$ is the average of dividend growth rates up to time-t:

$$\hat{\mu}_{d,t} = \frac{1}{t} \sum_{s=0}^{t-1} \Delta d_{s+1}.$$

(13)

We use time-0 to denote the start of the data sample, time-T_0 to denote the end of the training period, and time-T to denote the end of the data sample. Due to the relative complexity of our model, we use the first 30 years of our data sample as the training period, so that out-of-sample prediction is for the period between 1976 and 2015. Throughout this paper, for predictive analysis, we assume investors have access to earnings information 3
months after fiscal quarter or year end. The choice of 3 months is based on Securities and Exchange Commission (SEC) rules since 1934 that require public companies to file 10-Q reports no later than 45 days after fiscal quarter end and 10-K reports no later than 90 days after fiscal year end.9 We assume that information about prices and dividends is known to investors in real time.10 In the third and fourth columns of Table 4, we report out-of-sample R-square value for predicting annual dividend growth rates and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Results show that our model predicts 33.4 percent of the variation in annual dividend growth rates between 1976 and 2015 out-of-sample, which is a significant improvement over the 20.8 percent, 26.1 percent, and -1.9 percent from the baseline models.

We proceed to show that the differences in performance between our model and the baseline models in predicting dividend growth rates are significant. For two models \mathcal{M}_i and \mathcal{M}_j, we define incremental R-square value of \mathcal{M}_i over \mathcal{M}_j as:

$$R^2_i(\mathcal{M}_i, \mathcal{M}_j) = 1 - \frac{1}{T-t_0+1} \sum_{t=t_0}^{T-1} (\Delta d_{t+1} - E_t[\Delta d_{t+1} | \mathcal{M}_i])^2$$

$$- \frac{1}{T-t_0+1} \sum_{t=t_0}^{T-1} (\Delta d_{t+1} - E_t[\Delta d_{t+1} | \mathcal{M}_j])^2,$$ \hspace{1cm} (14)

and report statistics in Table 4. If incremental R-square value is significantly positive, it suggests that our dividend model is an improvement over the baseline models in predicting annual dividend growth rates. Taken as a whole, we note that the differences in forecasting performance between our model and the baseline models are significant.

1.2 Inflation and Real Rates

In a standard neoclassical asset pricing model, real dividend growth rates, not nominal rates, are of interest to investors in forming their investment decisions. To convert nominal dividend growth rates into real rates, we need to specify a process for inflation. We model inflation as a stationary AR[1] process:11

$$\Delta \pi_{t+1} - \mu_\pi = \eta (\Delta \pi_t - \mu_\pi) + \sigma_\pi \epsilon_{\pi,t+1}, \epsilon_{\pi,t+1} \sim N(0, 1).$$ \hspace{1cm} (15)

9In 2002, these rules were updated to require large firms file 10-Q reports no later than 40 days after fiscal quarter end and 10-K reports no later than 60 days after fiscal year end.

10To demonstrate the robustness of these assumptions, in the Online Appendix, we also replicate our main results imposing an additional 3 months lag in our estimation of dividend model parameters.

11In the Online Appendix, we explain why AR[1] is the most appropriate ARMA(p, q) model for inflation. Nevertheless, to show that our results are not driven by our inflation model or learning about the inflation process, we replicate our main results assuming inflation rates to be i.i.d. with a fixed mean and volatility.
<table>
<thead>
<tr>
<th>In-Sample</th>
<th>Out-of-Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
</tr>
<tr>
<td>J&L</td>
<td>0.428</td>
</tr>
<tr>
<td>Baseline 1</td>
<td>0.190</td>
</tr>
<tr>
<td>Baseline 2</td>
<td>0.217</td>
</tr>
<tr>
<td>Baseline 3</td>
<td>0.133</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out-of-Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2_f</td>
</tr>
<tr>
<td>J&L over Baseline 1</td>
</tr>
<tr>
<td>J&L over Baseline 2</td>
</tr>
<tr>
<td>J&L over Baseline 3</td>
</tr>
</tbody>
</table>

Table 4: **Dividend Growth Rates and Expected Growth Rates.** The top panel. The first column of this table reports in-sample R^2 value for predicting annual nominal dividend growth rates using our dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. Baseline 1), the dividend model in Campbell and Shiller (1988b) (i.e. Baseline 2), or a Markov-switching model (i.e. Baseline 3). The second and third columns report the out-of-sample R-square value for predicting annual dividend growth rates and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). The bottom panel. This table reports incremental R-square value of our dividend model over each one of the baseline models for predicting annual dividend growth rates. In-sample (out-of-sample) statistics are based on data between 1946 and 2015 (1976 and 2015).
Table 5 reports parameter estimates of the inflation model based on data between 1946 and 2015. We see a moderate level of persistence in inflation. Because $\lambda_{d\pi}$, $\lambda_{x\pi}$, and $\lambda_{q\pi}$ are not significantly different from zero, we force these correlation parameters to be zeros in our subsequent analysis for the purpose of parameters reduction. Given this inflation model, we can then derive the expression for expected real dividend growth rates based on expected nominal rates and inflation as:

$$E_t[\Delta \tilde{d}_{t+s+1}] = (\mu_d - \mu_\pi) + \rho^s x_t + \phi^s(q_t - \mu_q) - \eta^{s+1} (\Delta \pi_t - \mu_\pi), \ \forall s \geq 0. \ (16)$$

where $\Delta \tilde{d}_t = \Delta d_t - \Delta \pi_t$ denotes real dividend growth rate.\(^{12}\)

<table>
<thead>
<tr>
<th>μ_π</th>
<th>η</th>
<th>σ_π</th>
<th>$\lambda_{d\pi}$</th>
<th>$\lambda_{x\pi}$</th>
<th>$\lambda_{q\pi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.035</td>
<td>0.568</td>
<td>0.026</td>
<td>0.265</td>
<td>-0.268</td>
<td>0.232</td>
</tr>
<tr>
<td>(0.013)</td>
<td>(0.109)</td>
<td>(0.020)</td>
<td>(0.142)</td>
<td>(0.146)</td>
<td>(0.137)</td>
</tr>
</tbody>
</table>

Table 5: Inflation Model Parameter Estimates: This table reports estimated parameters from our inflation model, based on data between 1946 and 2015. Bootstrap simulated standard errors are reported in parentheses. Simulation is based on 100,000 iterations.

In Table 6, we report the in-sample and out-of-sample R-square values for predicting real, rather than nominal, annual dividend growth rates using either our model or one of the baseline models. We find that our model also outperforms the baseline models in forecasting real annual dividend growth rates. It predicts 37.3 percent of the variation in real annual dividend growth rates between 1946 and 2015 in-sample and 32.7 percent of the variation in real rates between 1976 and 2015 out-of-sample.

2 Parameter Uncertainty and Learning

The difference between in-sample and out-of-sample prediction is the assumption made on investors’ information set. Model parameters reported in Table 2 are estimated using data up to 2015, so they reflect investors’ knowledge of dividend dynamics at the end of 2015. That is, if investors were to estimate our dividend model at an earlier date, they would have estimated a set of parameter values different from those reported in Table 2. This is a result of investors’ knowledge of dividend dynamics evolving as more data

\(^{12}\)Throughout this paper, we put \sim on top of a variable to denote that the variable is defined in real, not nominal, terms.
Table 6: **Dividend Growth Rates and Expected Growth Rates (Real Rates)**. The top panel. The first column of this table reports in-sample R^2 value for predicting annual real dividend growth rates using our dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. Baseline 1), the dividend model in Campbell and Shiller (1988b) (i.e. Baseline 2), or a Markov-switching model (i.e. Baseline 3). The second and third columns report the out-of-sample R^2-square value for predicting annual dividend growth rates and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). The bottom panel. This table reports incremental R-square value of our dividend model over each one of the baseline models for predicting annual dividend growth rates. In-sample (out-of-sample) statistics are based on data between 1946 and 2015 (1976 and 2015).

<table>
<thead>
<tr>
<th></th>
<th>In-Sample</th>
<th></th>
<th>Out-of-Sample</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>R^2</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td>J&L</td>
<td>0.373</td>
<td>0.327</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Baseline 1</td>
<td>0.228</td>
<td>0.220</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Baseline 2</td>
<td>0.241</td>
<td>0.239</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Baseline 3</td>
<td>0.188</td>
<td>-0.099</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Out-of-Sample</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>p-value</td>
</tr>
<tr>
<td>J&L over Baseline 1</td>
<td>0.138</td>
<td>0.021</td>
</tr>
<tr>
<td>J&L over Baseline 2</td>
<td>0.115</td>
<td>0.037</td>
</tr>
<tr>
<td>J&L over Baseline 3</td>
<td>0.388</td>
<td>0.000</td>
</tr>
</tbody>
</table>
become available. We call this learning. That is, we use learning to refer to investors estimating model parameters at each point in time based on data available at the time. In this section, we summarize how learning affects investors’ beliefs about the parameters governing the dividend process, assuming that investors behave as if they learn about dividend dynamics using our model. We then show that learning about dividend dynamics can have significant asset pricing implications.

We report, in Figure 2, dividend model parameters, estimated based on data up to time-τ, for τ between 1976 and 2015. There are several points we take away from Figure 2. First, there is a gradual upward drift in investors’ beliefs about the unconditional mean μ_q of retention ratios. This suggests that firms have been paying a smaller fraction of earnings as cash dividends in recent decades. Second, there are gradual downward drifts in investors’ beliefs about ϕ that connects corporate payout policy to dividend dynamics. This means that dividends have become more smoothed over time. Third, a sharp drop in investors’ beliefs about the persistence θ of retention ratios towards the end of our data sample is due to the abnormally low earnings reported in late 2008 and early 2009 as a result of the financial crisis and the strong stock market recovery that followed.

Figure 2 shows that the persistence ρ of the latent variable x_t, as well as volatility σ_d, σ_x, and correlation λ_{dq} of shocks to the dividend process, are the parameters hardest to learn and least stable over time. Investors’ beliefs about ρ, σ_d, σ_x, and λ_{dq} fluctuate significantly over the sample period. For example, there are three times when investors’ beliefs about ρ sharply drops. The first is at the start of Dot-Com bubble between 1995 and 1998. The second is during the crash of that bubble in late 2002 and early 2003. The third is during the financial crisis in late 2008 and early 2009. Further, there is also a long-run trend that sees a gradual decrease in investors’ beliefs about ρ since early 1980s. That is, if we were to pick a random date between 1976 and 2015 and estimate our model based on data up to that date, on average we would have estimated a ρ of 0.734.\footnote{To establish a point of reference, Bansal and Yaron (2004) calibrate annualized persistence of expected dividend growth rate to be $0.979^{\frac{12}{2}} = 0.775.$} This would be significantly higher than the 0.496 reported in Table 2 estimated using the full data sample.

We can infer, from standard errors reported in Table 2, that learning about dividend dynamics is a slow process. That is, even with 70 years of data, there are still significant uncertainties surrounding the estimates of some model parameters. For example, the 95 percent confidence interval for ρ is between 0.183 and 0.807. To quantify the speed of
Figure 2: Evolution of Dividend Model Parameter Estimates Over Time. This figure plots estimates of the nine dividend model parameters, assuming that these parameters are estimated based on data up to time-τ for τ between 1976 and 2015.
learning, following Johannes, Lochstoer, and Mou (2016), for a parameter in our dividend model, we construct a measure that is one minus the inverse ratio between the bootstrap simulated standard error assuming that the parameter is estimated based on data up to 2015 and the bootstrap simulated standard error assuming that the parameter is estimated based on 10 additional years of data (i.e. if the parameter were estimated in 2025). In other words, this ratio reports how much an estimated parameter’s standard error would have reduced if investors were to have 10 more years of data. So the closer this ratio is to zero, the more difficult it is for investors to learn about that parameter. In Table 7, we report this measure for each of the nine model parameters. Overall, 10 years of additional data would only decrease the standard errors of parameter estimates by between 3 and 8 percent. Further, consistent with results in Figure 2 and in Table 1, it is more difficult to reduce uncertainties surrounding ρ, σ_d, σ_x, and λ_{dq} than any of the other parameters.

<table>
<thead>
<tr>
<th>μ_d</th>
<th>ϕ</th>
<th>σ_d</th>
<th>ρ</th>
<th>σ_x</th>
<th>μ_q</th>
<th>θ</th>
<th>σ_q</th>
<th>λ_{dq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.076</td>
<td>0.076</td>
<td>0.051</td>
<td>0.049</td>
<td>0.032</td>
<td>0.073</td>
<td>0.082</td>
<td>0.079</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Table 7: Speed of Learning about Dividend Model Parameters: This table reports the speed of learning for the nine dividend model parameters. Speed of learning is defined as one minus the inverse ratio between the bootstrap simulated standard error assuming that the parameter is estimated based on data between 1946 and 2015 and the bootstrap simulated standard error assuming that the parameter is estimated based on 10 additional years of data (i.e. if the parameter were estimated in 2025). Simulation is based on 100,000 iterations.

2.1 Parameter Uncertainty and Investors’ Expectations for the Long-Run

We show that learning about dividend dynamics can have significant asset pricing implications. That is, consider the log linearized present value relationship in Campbell and Shiller (1988):

$$p_t - d_t = \frac{\kappa_0}{1 - \kappa_1} + \sum_{s=0}^{\infty} \kappa_1^s (E_t[\Delta d_{t+s+1}] - E_t[R_{t+s+1}]), \quad (17)$$

where κ_0 and κ_1 are log-linearizing constants and R_{t+1} is the stock index’s log return.\(^{14}\)

The expression is a mathematical identity that connects price-to-dividend ratios, expected

\(^{14}\)To solve for $\kappa_0 = \log(1 + \exp(p - d)) - \kappa_1(p - d)$ and $\kappa_1 = \frac{\exp(p - d)}{1 + \exp(p - d)}$, we set unconditional mean of log price-to-dividend ratios $p - d$ to 3.46. This gives $\kappa_0 = 0.059$ and $\kappa_1 = 0.970$.

18
dividend growth rates, and discount rates, i.e. expected returns. We define stock yields as
discount rates that equate the present value of expected future dividends to the current
price of the stock index. That is, rearranging (17), we can write stock yields as:

\[sy_t \equiv (1 - \kappa_1) \sum_{s=0}^{\infty} \kappa_1^s E_t[\Delta R_{t+s+1}] \]

\[= \kappa_0 - (1 - \kappa_1)(p_t - d_t) + (1 - \kappa_1) \sum_{s=0}^{\infty} \kappa_1^s E_t[\Delta d_{t+s+1}] \].

(18)

We define long-run dividend growth expectations as:

\[\partial_t \equiv (1 - \kappa_1) \sum_{s=0}^{\infty} \kappa_1^s E_t[\Delta d_{t+s+1}] \].

(19)

Given that price-to-dividend ratios are observed, there is a one-to-one mapping between
long-run dividend growth expectations and stock yields. Further, long-run dividend
growth expectations are specific to the dividend model and its parameters. For example,
using our dividend model, we can re-write expected long-run dividend growth rates as:

\[\partial_t = (1 - \kappa_1) \sum_{s=0}^{\infty} \kappa_1^s \left(\mu_d + \rho^s x_t + \phi \theta^s (q_t - \mu_q) \right) \].

(20)

If investors instead use a different dividend model, their expectations of long-run dividend
growth rates will also be different. For example, if we assume that dividend growth rates
follow a white noise process centered around \(\mu_d \), we can re-write (19) instead as \(\partial_t = \mu_d \).

Further, because long-run dividend growth expectations are functions of dividend model
parameters, it is also affected by whether these parameters are estimated once based
on the full data sample, or estimated at each point in time based on data available
at the time. The first case corresponds to investors having complete knowledge of the
parameters describing the dividend process. The second case corresponds to investors
having to learn about dividend dynamics. In Figure 3, we plot our model’s long-run
dividend growth expectations, either assuming learning or assuming full information. The
plot shows that learning can have a considerable effect on investors’ long-run dividend
growth expectations.

In Figure 4, we plot stock yields, either assuming learning or assuming full information,
computed by substituting (20) into (18):

\[sy_t = \kappa_0 - (1 - \kappa_1)(p_t - d_t) + \mu_d + (1 - \kappa_1) \left(\frac{1}{1 - \kappa_1 \rho} x_t + \frac{\phi}{1 - \kappa_1 \theta} (q_t - \mu_q) \right) \].

(21)
Figure 3: **Expected Long-Run Dividend Growth Rates.** This figure plots long-run dividend growth expectations, computed using our dividend model, for the period between 1976 and 2015. Dividend model parameters are estimated based on data since 1946. Assuming full information, model parameters are estimated once based on the full data sample. Assuming learning, those parameters are estimated at each point in time based on data available at the time.

We also plot price-to-dividend ratios in Figure 4, and scale price-to-dividend ratios to allow for easy comparison to stock yields. We note that, assuming full information, there is almost no noticeable difference between the time series of price-to-dividend ratios and stock yields. This suggests that the variation in long-run dividend growth expectations, assuming that investors do not learn, is minimal relative to the variation in price-to-dividend ratios, so the latter dominates the variation in stock yields, as stock yields are a linear combination of these two components. However, assuming learning, we find significant differences between the time series of price-to-dividend ratios and stock yields.

3 Learning about Dividends and the Time Variation in Discount Rates

Results in the previous section show that parameters in our dividend model can be difficult to estimate with precision in finite sample. As a result, we argue that learning about model parameters can have significant asset pricing implications. This claim is based on
Figure 4: **Stock Yields.** This figure plots stock yields s_y_t, computed using our dividend model, and log price-to-dividend ratios (scaled) for the period between 1976 and 2015. Dividend model parameters are estimated based on data since 1946. Assuming full information, model parameters are estimated once based on the full data sample. Assuming learning, those parameters are estimated at each point in time based on data available at the time.

The assumption that our model captures investors’ expectations about future dividends. That is, we assume that investors behave as if they learn about dividend dynamics using our model, not a model that is very different from ours. In this section, we present evidence that supports this assumption.

First, we show that stock yields, assuming learning, predict annual stock index returns.\(^{15}\) To establish a baseline, note that, if we assume dividend growth rates follow a white noise process centered around μ_d, stock yields can be simplified to:

$$s_y_t = \kappa_0 - (1 - \kappa_1)(p_t - d_t) + \mu_d. \tag{22}$$

That is, under the white noise assumption, stock yields are just scaled price-to-dividend ratios. So, we regress stock index returns over the next year on price-to-dividend ratios, based on data between 1976 and 2015. We report regression statistics in the first column of Table 8. Standard errors reported are Newey and West (1987) adjusted.\(^{16}\) Results from

\(^{15}\) Ideally, we should show that stock yields, assuming learning, better capture the variation in long-run stock index returns. However, due to our limited data sample, we do not have sufficient non-overlapping data points of long-run returns to carry out this analysis. For this reason, we instead rely on annual returns.

\(^{16}\) Stambaugh (1999) shows that, when variables are highly serially correlated, OLS estimators’ finite-
Table 8 show that, between 1976 and 2015, price-to-dividend ratios predict 9.9 percent of the variation in annual stock index returns.

We then regress stock index returns over the next year on stock yields in (21), assuming learning. We report regression statistics in the second column of Table 8. We see that R^2 value from this regression is 14.9 percent. We note that the only difference between this regression and the baseline regression is the assumption on the dividend process. That is, here we assume that investors behave as if they learn about dividend dynamics using our model, whereas in the baseline regression we assume that expected dividend growth rates are constant. This means that we can attribute the increase in R^2 value from 9.9 percent to 14.9 percent to our modeling of learning about dividend dynamics. To emphasize the importance of learning, we regress stock index returns over the next year on stock yields in (21), assuming full information. Statistics are in the fourth column of Table 8. Results show that stock yields, assuming full information, perform roughly as well as price-to-dividend ratios in predicting annual stock index returns. This is consistent with results in Figure 4, which show that there is almost no noticeable difference between the time series of price-to-dividend ratios and stock yields, assuming full information. To show that the differences in the R^2 values in Table 8 are significant, we run bi-variate regressions of stock index returns over the next year on both stock yields, assuming learning, and either price-to-dividend ratios or stock yields, assuming full information. Statistics are in the fourth and fifth columns of Table 8. Results show that stock yields, assuming learning, strictly dominate both price-to-dividend ratios and stock yields, assuming full information, in predicting annual stock index returns.

It is worth noting that, for learning to be relevant in our context, investors must behave as if they are learning about dividend dynamics using our model. To illustrate this point, we regress stock index returns over the next year on stock yields, assuming instead that investors behave as if they learn about dividend dynamics using one of the three baseline models. Statistics are in the sixth to eighth columns of Table 8. We find that stock yields, assuming learning based on one of the baseline models, perform no better than price-to-dividend ratios in predicting annual stock index returns.

We can decompose stock index returns into the risk free rate component and the risk premium component. To investigate whether the gap in forecasting performance is for predicting risk free rates or risk premium, in the last row of Table 8, we report R^2-square sample properties can deviate from the standard regression setting.
Table 8: Stock Index Returns and Stock Yields: This table reports the coefficient estimates and R-square value from regressing stock index returns over the next year on log price-to-dividend ratios and stock yields, computed using our dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. Baseline 1), the dividend model in Campbell and Shiller (1988b) (i.e. Baseline 2), or a Markov-switching model (i.e. Baseline 3), and assuming investors either learn (i.e. L), or do not learn (i.e. F), about model parameters. Regression is based on data between 1976 and 2015. Dividend model parameters are estimated based on data since 1946. Newey and West (1987) standard errors are reported in parentheses. Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using *, **, and ***.

<table>
<thead>
<tr>
<th></th>
<th>J&L</th>
<th>Baseline 1</th>
<th>Baseline 2</th>
<th>Baseline 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_t - d_t$</td>
<td>-0.114**</td>
<td>0.017</td>
<td>(0.046)</td>
<td>(0.075)</td>
</tr>
<tr>
<td>$sy_t(\mathcal{L})$</td>
<td>3.955***</td>
<td>4.368**</td>
<td>4.554**</td>
<td>2.971**</td>
</tr>
<tr>
<td>$sy_t(F)$</td>
<td>3.742**</td>
<td>-0.778</td>
<td>(1.485)</td>
<td>(2.533)</td>
</tr>
<tr>
<td>\hat{R}^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return</td>
<td>0.099</td>
<td>0.149</td>
<td>0.103</td>
<td>0.149</td>
</tr>
<tr>
<td>Exc. Return</td>
<td>0.092</td>
<td>0.142</td>
<td>0.096</td>
<td>0.142</td>
</tr>
</tbody>
</table>

value for predicting stock index excess returns. Results show that the differences in forecasting performance is mostly for predicting risk premium.

3.1 Learning about Dividend Dynamics and the Term-Structure of Expected Returns

Although stock yields are, by definition, optimal forecasts of long-run stock index returns, they do not reveal information about the term-structure of expected returns, i.e. the difference in how investors discount near-term versus distant-term cash flows. Further, if learning about dividend dynamics also affects the term structure of expected returns aside from its effect on long-run discount rates, the effect of learning on the variation

\[\text{Let } \hat{R}_t \text{ be stock index return forecast and } R_{f,t} \text{ be the risk free rate. The in-sample R-square value for predicting stock index returns is } \frac{\hat{\text{var}}(R_{t+1}-\hat{R}_{t+1})}{\text{var}(R_{t+1})}, \text{ where } \hat{\text{var}}(\cdot) \text{ is the sample variance. The in-sample R-square value for predicting stock index excess returns is } \frac{\hat{\text{var}}((R_{t+1}-R_{f,t+1})-(\hat{R}_{t+1}-R_{f,t+1}))}{\text{var}(R_{t+1}-R_{f,t+1})}. \]
in annual stock index returns cannot be captured by its effect on stock yields alone. To see this, we run bi-variate regressions of stock index returns over the next year on stock yields in (21), assuming learning, and investors beliefs about one of the nine dividend model parameters, estimated at each point of time based on data available at the time. For example, for the parameter \(\rho \), let \(\hat{\rho}_t \) denote the estimate of \(\rho \) based on data up to time-\(t \), we run the bi-variate regression:

\[
R_{t+1} = \alpha + \beta \cdot sy_t(L) + \gamma \cdot \hat{\rho}_t + \epsilon_{t+1}
\]

(23)

where \(L \) stands for learning. Estimated coefficients from (23) are reported in Table 9. The regression examines whether the effect of learning on the variation in annual stock index returns can be fully accounted for by its effect on stock yields. If learning affects the variation in annual stock index returns only through its effect on long-run discount rates, we should see that the \(\gamma \) estimates are not significantly different from zero. Instead, results show that learning about four of the nine model parameters, namely persistence \(\rho \) of the latent variable \(x_t \) and volatility \(\sigma_d, \sigma_x \), and correlation \(\lambda_{dq} \) of shocks to the dividend process, significantly influences the variation in annual stock index returns, even after controlling for the effect of learning on stock yields. That is, including investors’ beliefs about one of these four parameters as the additional regressant increases \(R \)-square value for predicting annual stock index returns from 14.9 percent to between 21.6 percent and 25.6 percent.\(^{18}\) This confirms that, aside from its effect on long-run discount rates, learning about dividend dynamics also affects the term structure of expected returns in a way that is not captured by its effect on stock yields alone.

\section{Learning about Dividends in a Dynamic Equilibrium Model}

Our results thus far show that learning about dividend dynamics affects both long-run discount rates and the term structure of expected returns. In this section, we search for a dynamic equilibrium asset pricing model that is able to quantitatively capture the role of learning in determining asset prices and expected returns. That is, a model that, after incorporating learning about dividend dynamics, is able to show strong performance in predicting annual stock index returns that is consistent with the data.

\(^{18}\)Interestingly, we recall that, based on earlier results in Table 2, Table 7, and Figure 2, these four parameters are also the hardest for investors to learn over time.
Table 9: Stock Index Returns, Stock Yields, and Investors’ Beliefs about Dividend Model Parameters: This table reports the coefficient estimates and R^2-square value from regressing stock index returns over the next year on stock yields, assuming learning, and investors beliefs about one of our dividend model parameters, estimated using our dividend model at each point in time based on only data available at the time. Regression is based on data between 1976 and 2015. Dividend model parameters are estimated based on data since 1946. Newey and West (1987) standard errors are reported in parenthese. Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using *, **, and ***.

<table>
<thead>
<tr>
<th></th>
<th>μ_d</th>
<th>ϕ</th>
<th>σ_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>4.032^{**}</td>
<td>5.606^{**}</td>
<td>6.165^{**}</td>
</tr>
<tr>
<td></td>
<td>(1.158)</td>
<td>(1.270)</td>
<td>(0.884)</td>
</tr>
<tr>
<td>γ</td>
<td>-0.446</td>
<td>-0.601</td>
<td>-6.320^{**}</td>
</tr>
<tr>
<td></td>
<td>(2.499)</td>
<td>(0.449)</td>
<td>(1.981)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R^2</th>
<th>Return</th>
<th>0.149</th>
<th>0.179</th>
<th>0.216</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exc. Return</td>
<td>0.142</td>
<td>0.173</td>
<td>0.210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ρ</th>
<th>σ_x</th>
<th>μ_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>5.700^{**}</td>
<td>6.142^{**}</td>
<td>3.971^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.688)</td>
<td>(0.728)</td>
<td>(1.290)</td>
</tr>
<tr>
<td>γ</td>
<td>-0.401^{**}</td>
<td>6.773^{**}</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(1.463)</td>
<td>(1.107)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R^2</th>
<th>Return</th>
<th>0.256</th>
<th>0.250</th>
<th>0.149</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exc. Return</td>
<td>0.250</td>
<td>0.244</td>
<td>0.142</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>θ</th>
<th>σ_q</th>
<th>λ_{dq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>4.058^{**}</td>
<td>4.414^{**}</td>
<td>4.731^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.981)</td>
<td>(1.078)</td>
<td>(0.766)</td>
</tr>
<tr>
<td>γ</td>
<td>-0.192</td>
<td>0.413^*</td>
<td>0.370^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.117)</td>
<td>(0.215)</td>
<td>(0.077)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R^2</th>
<th>Return</th>
<th>0.169</th>
<th>0.167</th>
<th>0.249</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exc. Return</td>
<td>0.163</td>
<td>0.160</td>
<td>0.243</td>
</tr>
</tbody>
</table>
For the rest of this section, we first provide the theoretical foundation that a asset pricing model’s performance in predicting stock index returns can be used to assess that model. Then, we incorporate learning about dividend dynamics into a long-run risks model and show that 22.4 percent of the variation in annual stock index returns can be predicted using such a model.

4.1 Return Predictability and Assessing Asset Pricing Models

The criterion we propose to assess an asset pricing model is the deviation of that candidate model’s expected returns from the expected returns of the true model. The true model here is defined as the asset pricing model that best describes the behavior of the marginal investor who prices that asset, here the stock index, in a frictionless and efficient market. Let \(M_i \) be a candidate model, \(M_0 \) be the unobserved true asset pricing model, \(R_t \) be log return of the stock index, \(E_t[R_{t+1}|M_i] \) be the \(M_i \)-endowed-investors’ expectation of stock index returns over the next year, and \(E_t[R_{t+1}|M_0] \) be expected return under the true model. The following definition defines a better asset pricing model, i.e. the candidate model that is closer to the true model, as the model that minimizes the mean squared difference between its expected returns and the expected returns of the true model.

Definition 1 A candidate asset pricing model \(M_i \) is a better approximation of the true asset pricing model (\(M_0 \)) than model \(M_j \) if and only if:

\[
E \left[(E_t[R_{t+1}|M_0] - E_t[R_{t+1}|M_i])^2 \right] < E \left[(E_t[R_{t+1}|M_0] - E_t[R_{t+1}|M_j])^2 \right].
\]

A clear inconvenience of this definition is that the true asset pricing model \(M_0 \) is never observable, and thus \(E_t[R_{t+1}|M_0] \) is unobservable. To circumvent this issue, we notice that, assuming markets are frictionless and efficient and investors form rational expectations, the error term \(\epsilon_{t+1} = R_{t+1} - E_t[R_{t+1}|M_0] \) is orthogonal to any information that is time-\(t \) measurable. This leads to the following proposition.

Proposition 1 A candidate asset pricing model \(M_i \) is a better approximation of the true asset pricing model (\(M_0 \)) than model \(M_j \) if and only if:

\[
1 - \frac{E \left[(R_{t+1} - E_t[R_{t+1}|M_i])^2 \right]}{E \left[(R_{t+1} - E[R_{t+1}])^2 \right]} > 1 - \frac{E \left[(R_{t+1} - E_t[R_{t+1}|M_j])^2 \right]}{E \left[(R_{t+1} - E[R_{t+1}])^2 \right]}.
\]
Proofs are in Appendix A.3. In other words, if we define out-of-sample R-square value:

$$R^2(M_i) = 1 - \frac{1}{T - T_0} \sum_{t=T_0}^{T-1} (R_{t+1} - E_t[R_{t+1}|M_i])^2 \frac{1}{T - T_0} \sum_{t=T_0}^{T-1} (R_{t+1} - \hat{\mu}_{r,t})^2,$$

where $\hat{\mu}_{r,t} = \frac{1}{t} \sum_{s=0}^{t-1} R_{s+1}$ is the average of stock index returns up to time-t, as the performance of a candidate model M_i in predicting annual stock index returns, and assuming we have a sufficiently long data sample, then we can use it to assess how close the candidate model is to the true model.

4.2 Return Predictability and Learning about Long-Run Risks

We propose a long-run risks model that combines our dividend model, Epstein and Zin (1989) investor preferences, and persistent consumption growth rates as in Bansal and Yaron (2004) and show that such a model predicts 22.4 percent of the variation in annual stock index returns.

Epstein and Zin (1989) has been one of the most widely used expressions for investor preferences in the literature. Investor preferences are defined recursively as:

$$U_t = \left[(1 - \delta) \tilde{C}_t^{\frac{1-\alpha}{\zeta}} + \delta \left(E_t \left[U_{t+1}^{1-\alpha} \right] \right)^{\frac{1}{\zeta}} \right]^{\frac{\zeta}{1-\alpha}}, \quad \zeta = \frac{1 - \alpha}{1 - \frac{1}{\psi}},$$

where \tilde{C}_t is real consumption, ψ is the elasticity of intertemporal substitution (EIS), and α is the coefficient of risk aversion. We note that, the representative agent prefers early resolution of uncertainty if $\zeta < 0$ and prefers late resolution of uncertainty if $\zeta > 0$.\(^{19}\) Log of the intertemporal marginal rate of substitution (IMRS) is:

$$m_{t+1} = \zeta \log(\delta) - \frac{\zeta}{\psi} \Delta \tilde{c}_{t+1} + (\zeta - 1) \tilde{R}^c_{t+1},$$

where $\Delta \tilde{c}_{t+1} = \log(\tilde{C}_{t+1}) - \log(\tilde{C}_t)$ and \tilde{R}^c_{t+1} denotes the real return of the representative agent’s wealth portfolio. Following Bansal and Yaron (2004), we assume that consumption and dividend growth rates carry the same persistent latent component x_t and allow volatility in consumption growth rates to be time varying.\(^{20}\) That is, we describe real consumption

\(^{19}\)Or equivalently, if $\alpha > 1$, then the representative agent prefers early resolution of uncertainty if $\psi > 1$ and prefers late resolution of uncertainty if $\psi < 1$.

\(^{20}\)A deviation from Bansal and Yaron (2004) is that the latent variable x_t is assumed to be homoskedastic in our model.
growth rates using the following system of equations:

\[
\Delta \tilde{c}_{t+1} - \mu_c = \frac{1}{\gamma} x_t + \sigma_t \epsilon_{c,t+1} \\
\sigma^2_{t+1} - \sigma^2_c = \omega (\sigma^2_t - \sigma^2_c) + \sigma_c \epsilon_{c,t+1}.
\] (27)

The correlation matrix for shocks to consumption, dividends, and retention ratios can be written as:

\[
\begin{pmatrix}
\epsilon_{c,t+1} \\
\epsilon_{d,t+1} \\
\epsilon_{x,t+1} \\
\epsilon_{c,t+1} \\
\epsilon_{q,t+1} \\
\epsilon_{\pi,t+1}
\end{pmatrix}
\sim \text{i.i.d. } \mathcal{N}
\left(
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \lambda_{dq} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & \lambda_{dq} & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\right).
\] (28)

Because we do not use actual consumption data in this paper, the correlations that involve shocks \(\epsilon_{c,t}\) or \(\epsilon_{c,t}\) to the consumption process cannot be identified. So, for convenience, we set them to zeros. The remaining \(\lambda_{dq}\) is estimated as a part of the dividend process.

We note that the unconditional mean of consumption growth rates must equal to that of dividend growth rates, i.e. \(\mu_c = \mu_d - \mu_\pi\), or dividend as a fraction of consumption will either become negligible or explode. For the remaining parameters in (27), apart from those concerning the latent variable \(x_t\), we adopt the calibration of Bansal and Yaron (2004), converted to quarterly frequency. They are: \(\sigma_c = 0.0078 \cdot 3 = 0.0234\), \(\omega = 0.987^3 = 0.962\), \(\sigma_\pi = 0.00023 \cdot 3^2 = 0.00021\), and \(\gamma = 3\). The persistence of the latent variable \(x_t\) is set to \(\rho = 0.979^3 = 0.938\) in Bansal and Yaron (2004). A common criticism of the long-run risk model has always been that it requires a small but highly persistent component in consumption and dividend growth rates that is difficult to find support in the data.\(^{21}\) This criticism serves as the rationale for why we expect learning to be important. For investor preferences, we choose \(\psi = 1.5\) to be consistent with preferences for the early resolution of uncertainty, and choose \(\alpha = 4\) and \(\delta = 0.995\) so that the unconditional means of risk free rates and risk premium from our model are roughly consistent with data between 1946 and 2015.

We solve our long-run risk model in Appendix A.4. In solving this model, we closely follow the steps in Bansal and Yaron (2004). The model consists of four state variables: latent variables \(x_t\) and \(\sigma^2_t\), retention ratios, and inflation rates. We can solve for price-to-
dividend ratio as a linear function of these four state variables:

\[p_t - d_t = A_{d,0} + A_{d,1}x_t + A_{d,2}\sigma_t^2 + A_{d,3} (q_t - \mu_q) + A_{d,4} (\Delta \pi_t - \mu_\pi). \]

(29)

We can solve for expected returns over the next year as:

\[E_t[R_{t+1}] = A_{r,0} + A_{r,1}x_t + A_{r,2}\sigma_t^2 + A_{r,4} (\Delta \pi_t - \mu_\pi), \]

(30)

where coefficients \(A_{d,\cdot} \) \(\text{and} \) \(A_{r,\cdot} \), derived in Appendix A.4, are functions of the parameters that describe investor preferences, consumption dynamics, and dividend dynamics. We note that, substituting (29) into (30), we can avoid estimating the latent variable \(\sigma_t^2 \) directly and instead write expected returns over the next year as a function state variables that can be estimated from dividend dynamics and price-to-dividend ratios:

\[
E_t[R_{t+1}] = A_0 + A_1x_t + A_2(p_t - d_t) + A_3(q_t - \mu_q) + A_4(\Delta \pi_t - \mu_\pi),
\]

\[A_0 = \frac{A_{r,0}A_{d,2} - A_{r,2}A_{d,0}}{A_{d,2}}, \quad A_1 = \frac{A_{r,1}A_{d,2} - A_{r,2}A_{d,1}}{A_{d,2}}, \]

\[A_2 = \frac{A_{r,2}}{A_{d,2}}, \quad A_3 = -\frac{A_{r,2}A_{d,3}}{A_{d,2}}, \quad A_4 = \frac{A_{r,4}A_{d,2} - A_{r,2}A_{d,4}}{A_{d,2}}. \]

(31)

(32)

We examine how our long-run risks model, assuming learning, i.e. our learning model, performs in predicting annual stock index returns.\(^{22}\) Here, learning refers to estimating dividend model parameters at each point in time based on data available at the time and substituting these parameters into (31) to compute expected returns. We measure forecasting performance using (quasi) out-of-sample \(R \)-square value defined as:\(^{23}\)

\[R^2(L) = 1 - \frac{1}{T-T_0+1} \sum_{t=T_0}^{T-1} \frac{(R_{t+1} - E_t[R_{t+1}|L])^2}{(R_{t+1} - \hat{\mu}_{r,t})^2}. \]

(33)

where \(L \) stands for learning. We use the first 30 years of the data sample as the training period and compute the out-of-sample \(R \)-square value using data between 1976 and 2015. In the first row of Table 12, we report out-of-sample \(R \)-square value for predicting annual stock index returns using our learning model. We find that, between 1976 and 2015, our long-run risks model predicts 22.4 percent of the variation in annual stock index returns.

\(^{22}\)See Figure 7 for a plot of expected returns against returns realized over the next year between 1976 and 2015.

\(^{23}\)The term quasi refers to the fact that some of parameters in our long-run risks model cannot be estimated from data and are calibrated instead.
This level of forecasting performance significantly exceeds what is commonly documented in the existing literature.

To isolate the incremental contribution of learning to the model’s performance in predicting annual stock index returns, we compute expected returns in (31) using dividend model parameters estimated based on the full data sample, i.e., our full information model. We report out-of-sample R^2 value for predicting stock index returns using our full information model in the second row of Table 10. We see that, assuming full information, R^2 value reduces from 22.4 percent to 6.4 percent. This means that learning accounts for more than half of the forecasting performance. To examine the significance of this difference, we report, in the third row of Table 10, incremental R^2 value of our learning model over full information model:

$$R^2_I(L, F) = 1 - \frac{1}{T - T_0 + 1} \sum_{t=T_0}^{T-1} (R_{t+1} - E_t[R_{t+1}|L])^2 \frac{1}{T - T_0 + 1} \sum_{t=T_0}^{T-1} (R_{t+1} - E_t[R_{t+1}|F])^2.$$ \hspace{1cm} (34)

Also, we note that $R^2_I(L, F)$, $R^2(L)$ and out-of-sample R-square value $R^2(F)$ of our full information model are related through the following equality:

$$R^2_I(L, F) = 1 - \frac{1 - R^2(L)}{1 - R^2(F)}.$$ \hspace{1cm} (35)

Results from Table 10 show that the incremental gain in forecasting performance that is attributable to modeling investors’ learning about dividend dynamics is significant.

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Model</td>
<td>0.224</td>
<td>0.002</td>
</tr>
<tr>
<td>Full Information Model</td>
<td>0.064</td>
<td>0.118</td>
</tr>
<tr>
<td>Incremental</td>
<td>0.171</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Table 10: **Stock Index Returns and the Long-Run Risks Model.** This table reports out-of-sample R-square value for predicting annual stock index returns over the next year using our long-run risks model, assuming investors either learn, or do not learn, about dividend model parameters, and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Also reported is incremental out-of-sample R-square value. Dividends are estimated using data since 1946. Statistics are based on data between 1976 and 2015.
4.2.1 Forecasting Performance of Long-Run Risks Model over Time

For additional details on how our long-run risk model’s forecasting performance evolves over time, we follow Goyal and Welch (2008) and define the cumulative sum of squared errors difference (SSED) between predicting annual stock index return using our learning model and using the historical mean of returns as:

\[
D_t(L) = \sum_{s=T_0}^{t-1} (R_{s+1} - E_t[R_{s+1}|L])^2 - \sum_{s=T_0}^{t-1} (R_{s+1} - \hat{\mu}_{r,t})^2.
\] (36)

The SSED is plotted on the left side of Figure 5. If the forecasting performance of our learning model is stable and robust over time, we should observe a steady but constant decline in SSED. Instead, if the forecasting performance is especially poor in certain sub-period of the data, we should see a significant drawback in SSED during that sub-period. We note that our model’s forecasting performance is positive through the majority of the data sample. Overall, about one third of the forecasting performance is realized during the first two decades of the data sample, the remaining two-thirds during the Dot-Com crash. In contrast, performance has been relatively flat over the last decade. As a baseline, on the right of Figure 5, we report the SSED between predicting annual stock index returns using our full information model \(\mathcal{F}\) and using the historical mean of returns. We see that, assuming full information, there are clearly periods during which the model performs poorly, such as during the Dot-Com boom in the late 1990s.

To isolate the incremental contribution of learning to SSED, we plot, in Figure 6, the incremental SSED defined as the difference in SED between our learning model and our full information model:

\[
D_t(L) - D_t(F) = \sum_{s=T_0}^{t-1} (R_{s+1} - E_t[R_{s+1}|L])^2 - \sum_{s=T_0}^{t-1} (R_{s+1} - E_t[R_{s+1}|F])^2.
\] (37)

We note that the incremental gain in forecasting performance from learning is positive and consistent throughout most of the data sample, except during the 2008-2009 financial crisis. We conjecture one possible explanation for this finding is that the financial crisis represent a rare regime change. As a consequence, investors no longer learn from much of the historical dividend data, realized under a different regime, as they become irrelevant under the new regime, leading to our learning model becoming misspecified during that sub-period.
Figure 5: **Cumulative Sum of Squared Errors Difference.** This figure plots the cumulative sum of squared errors difference, assuming investors either learn, or do not learn, about dividend model parameters, for the period between 1976 and 2015. Dividend model parameters are estimated based on data since 1946.
4.2.2 The Dot-Com Crash

Figure 5 suggests that the Dot-Com crash plays an especially important role in the return predictability results. To emphasize that our learning model’s forecasting performance and the incremental contribution of learning to this performance is not exclusively restricted to the few years surrounding the Dot-Com crash, we recalculate R^2-squared value and incremental R^2-squared value separately for using our learning model to predict annual stock index returns, but for the Dot-Com crash alone, defined as between March 2000 and October 2002, and for the sub-period even after excluding the Dot-Com crash. Results are reported in Table 11. We find that the forecasting performance of our learning model is significant excluding the Dot-Com crash, and so is the incremental contribution of learning to this predictive performance.

4.2.3 Long-Run Risks Model and the Term-Structure of Discount Rates

Earlier in Table 9, we have shown that the effect of learning on the variation in annual stock index returns is not fully captured by its effect on stock yields. We also know from comparing results in Table 8 and Table 11 that, assuming learning, our long-run
risks model does a significantly better job than stock yields in predicting annual stock index returns. This outperformance is because our model is able to capture the full effect of learning on the variation in annual stock index returns. To see this, we run bi-variate regressions of stock index returns over the next year on expected returns of our learning model and investors beliefs about one of the nine dividend model parameters. For example, for parameter ρ, let $\hat{\rho}_t$ denote the estimate of ρ based on data up to time-t, we run the bi-variate regression:

$$R_{t+1} = \alpha + \beta \cdot E_t[R_{t+1}|L] + \gamma \cdot \hat{\rho}_t + \epsilon_{t+1}$$ \hspace{1cm} (38)

where L stands for learning. Estimated coefficients are reported in Table 12. If our learning model is able to fully capture the effect of learning on the variation in annual stock index returns, then in contrast to results in Table 9, we should expect none of the γ estimates to be different from zero. Results show that this is indeed the case.

4.3 The Role of Epstein and Zin (1989) Preferences

To show that Epstein and Zin (1989) preferences are critical to our long-run risks model’s performance in predicting annual stock index returns, we replace Epstein and Zin (1989) preferences in our model with Constant Relative Risk Aversion (CRRA) preferences:

Table 11: **Stock Index Returns and the Long-Run Risks Model (Dot-Com Crash)**. This table reports out-of-sample R-square value for predicting stock index returns over the next year using our long run risks model, assuming investors either learn, or do not learn, about dividend model parameters, and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Also reported is incremental out-of-sample R-square value. Dividends are estimated using data since 1946. Statistics are based on two subsamples of the data: 1) the Dot-Com crash between March 2000 and October 2002 and 2) excluding the Dot-Com crash.

<table>
<thead>
<tr>
<th></th>
<th>Dot-Com Crash</th>
<th></th>
<th>Rest of the Sample</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>p-value</td>
<td>R^2</td>
<td>p-value</td>
</tr>
<tr>
<td>Learning Model</td>
<td>0.725</td>
<td>0.287</td>
<td>0.090</td>
<td>0.074</td>
</tr>
<tr>
<td>Full Information Model</td>
<td>0.762</td>
<td>0.251</td>
<td>-0.123</td>
<td>1.000</td>
</tr>
<tr>
<td>Incremental</td>
<td>-0.153</td>
<td>1.000</td>
<td>0.189</td>
<td>0.007</td>
</tr>
</tbody>
</table>
Table 12: Stock Index Returns, the Long-Run Risks Model, and Investors’ Beliefs about Dividend Model Parameters

This table reports the coefficient estimates and R^2-square value from regressing stock index returns over the next year on expected returns of our learning model and investors beliefs about one of our dividend model parameters, estimated using our dividend model at each point in time based on only data available at the time. Regression is based on data between 1976 and 2015. Dividend model parameters are estimated based on data since 1946. Newey and West (1987) standard errors are reported in parentice. Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using *, **, and ***.

<table>
<thead>
<tr>
<th></th>
<th>μ_d</th>
<th>ϕ</th>
<th>σ_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.801***</td>
<td>0.802***</td>
<td>0.810***</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(0.101)</td>
<td>(0.097)</td>
</tr>
<tr>
<td>γ</td>
<td>0.491</td>
<td>0.284</td>
<td>0.804</td>
</tr>
<tr>
<td></td>
<td>(1.859)</td>
<td>(0.308)</td>
<td>(1.717)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ρ</th>
<th>σ_x</th>
<th>μ_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.834***</td>
<td>0.823***</td>
<td>0.783***</td>
</tr>
<tr>
<td></td>
<td>(0.100)</td>
<td>(0.097)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>γ</td>
<td>0.047</td>
<td>-0.702</td>
<td>-0.748</td>
</tr>
<tr>
<td></td>
<td>(0.097)</td>
<td>(1.427)</td>
<td>(1.040)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>θ</th>
<th>σ_q</th>
<th>λ_{dq}</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.811***</td>
<td>0.820***</td>
<td>0.785***</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.095)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>γ</td>
<td>0.002</td>
<td>-0.140</td>
<td>0.043</td>
</tr>
<tr>
<td></td>
<td>(0.127)</td>
<td>(0.170)</td>
<td>(0.078)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td>0.223</td>
</tr>
<tr>
<td>Exc. Return</td>
<td>0.216</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td>0.224</td>
</tr>
<tr>
<td>Exc. Return</td>
<td>0.218</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td>0.222</td>
</tr>
<tr>
<td>Exc. Return</td>
<td>0.216</td>
</tr>
</tbody>
</table>

The table provides the coefficient estimates and R^2-square values for the regression of stock index returns over the next year on expected returns of the learning model and investors’ beliefs about one of the dividend model parameters, estimated using the dividend model at each point in time based on available data at the time. The regression is based on data between 1976 and 2015. Dividend model parameters are estimated based on data since 1946. Newey and West (1987) standard errors are reported in parentheses. Estimates significant at 90, 95, and 99 percent confidence levels are highlighted using *, **, and ***.
\[U_t = \sum_{t=0}^{\infty} \delta^t \frac{C_t^{1-\alpha}}{1 - \alpha} \]

(39)

where we set preference parameters \(\alpha \) and \(\delta \) so that the model’s risk free rates and risk premium can roughly match the data between 1946 and 2015. We then report, in Table 13, \(R^2 \)-square value for predicting annual stock index returns using the CRRA model, either assuming learning or assuming full information. We see that, assuming investors learn about dividend dynamics, \(R^2 \)-square value for predicting annual stock index returns reduces from 22.4 percent for Epstein and Zin (1989) preferences to 11.1 percent for CRRA preferences, and the incremental contribution of learning to \(R^2 \)-square value reduces from 17.1 percent to 6.6 percent. It is clear from these results that CRRA preferences cannot fully capture the effect of learning about dividend dynamics on the variation in annual stock index returns.

<table>
<thead>
<tr>
<th></th>
<th>(R^2)</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Model</td>
<td>0.111</td>
<td>0.037</td>
</tr>
<tr>
<td>Full Information Model</td>
<td>0.049</td>
<td>0.174</td>
</tr>
<tr>
<td>Incremental</td>
<td>0.066</td>
<td>0.115</td>
</tr>
</tbody>
</table>

Table 13: **Stock Index Returns and the Long-Run Risks Model (CRRA Preferences)**. This table reports out-of-sample \(R^2 \)-square value for predicting stock index returns over the next year using our long run risks model, assuming investors either learn, or do not learn, about dividend model parameters, and the corresponding \(p \)-value from the adjusted-MSPE statistic of Clark and West (2007). Also reported is incremental out-of-sample \(R^2 \)-square value. Dividends are estimated using data since 1946. Statistics are based on data between 1976 and 2015.

4.4 Robustness: An Alternative Long-Run Risks Model

To show that our findings are not restricted to one specification of the long-run risks model, we propose an alternative long-run risks model and examine its performance in predicting annual stock index returns. In contrast to our default model, where stochastic volatility of consumption growth rates serve as one of the model’s state variables, we assume consumption volatility to be constant over time in this alternative model. To make up for the lost state variable, we assume instead that the correlations between shocks \(\epsilon_{c,t+1} \) to consumption growth rates and shocks \(\epsilon_{d,t+1} \) and \(\epsilon_{e,t+1} \) to dividend and earnings
growth rates are equal and time varying, i.e. $\lambda(\epsilon_{c,t+1}, \epsilon_{d,t+1}) = \lambda(\epsilon_{c,t+1}, \epsilon_{e,t+1}) = \lambda_t$.\footnote{It can be derived that the correlation between $\epsilon_{c,t+1}$ and $\epsilon_{q,t+1}$ is then $\sqrt{\sigma_d^2 + \sigma_q^2 + 2 \sigma_d \sigma_q \lambda_{dq} - \sigma_d \sigma_q \lambda_{t+1}}$.} In other words, consumption growth rates and the variance-covariance matrix of shocks to consumption, dividends, and retention ratios can together be summarized by the following system of equations:

$$
\Delta \epsilon_{c,t+1} - \mu_c = \frac{1}{\gamma} x_t + \sigma_c \epsilon_{c,t+1}
$$

where x_t is the time varying correlation between $\epsilon_{c,t+1}$ and both $\epsilon_{d,t+1}$ and $\epsilon_{e,t+1}$.

Our calibration of parameters in this alternative model is: $\sigma_c = 0.0234$, $\omega = 0.962$, and $\gamma = 3$.

In choosing how we calibrate these parameters, we try to minimize our deviations from the default model. We solve this alternative model in Appendix A.4. In solving this model, we closely follow the steps in Bansal and Yaron (2004). The model consists of four state variables: latent variables x_t and λ_t, retention ratios, and inflation rates. We can solve for price-to-dividend ratio as a linear function of these four state variables:

$$
p_t - d_t = A_{d,0} + A_{d,1} x_t + A_{d,2} \lambda_t + A_{d,3} (q_t - \mu_q) + A_{d,4} (\Delta \pi_t - \mu_\pi).
$$

We can solve for expected returns over the next year as:

$$
E_t[R_{t+1}] = A_{r,0} + A_{r,1} x_t + A_{r,2} \lambda_t + A_{r,4} (\Delta \pi_t - \mu_\pi),
$$

where coefficients $A_{d,*}$ and $A_{r,*}$, derived in Appendix A.4, are functions of the parameters governing investors’ preferences, consumption dynamics, and dividend dynamics. We note that, substituting (41) into (42), we can avoid estimating λ_t directly and instead write expected returns over the next year as a function state variables that can be estimated...
from dividend dynamics and price-to-dividend ratios:

\[E_t[R_{t+1}] = A_0 + A_1 x_t + A_2 (p_t - d_t) + A_3 (q_t - \mu_q) + A_4 (\Delta \pi_t - \mu_\pi), \]

\[A_0 = \frac{A_{r,0} A_{d,2} - A_{r,2} A_{d,0}}{A_{d,2}}, \quad A_1 = \frac{A_{r,1} A_{d,2} - A_{r,2} A_{d,1}}{A_{d,2}}, \]

\[A_2 = \frac{A_{r,2} A_{d,2}}{A_{d,2}}, \quad A_3 = \frac{-A_{r,2} A_{d,3}}{A_{d,2}}, \quad A_4 = \frac{A_{r,4} A_{d,2} - A_{r,2} A_{d,4}}{A_{d,2}}. \]

In Table 14, we report out-of-sample \(R \)-square value for predicting annual stock index returns using this alternative model, assuming learning. These results are very similar to those reported using the default model. Between 1976 and 2013, this alternative learning model predicts as much as 22.6 percent of the variation in annual stock index returns. Learning accounts for over half of this 22.6 percent.

<table>
<thead>
<tr>
<th>Model</th>
<th>(R^2)</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Model</td>
<td>0.226</td>
<td>0.002</td>
</tr>
<tr>
<td>Full Information Model</td>
<td>0.065</td>
<td>0.117</td>
</tr>
<tr>
<td>Incremental</td>
<td>0.171</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Table 14: **Stock Index Returns and the Long-Run Risks Model (Alternative Specification).**
This table reports out-of-sample \(R \)-square value for predicting stock index returns over the next year using our long run risks model, assuming investors either learn, or do not learn, about dividend model parameters, and the corresponding \(p \)-value from the adjusted-MSPE statistic of Clark and West (2007). Also reported is incremental out-of-sample \(R \)-square value. Dividends are estimated using data since 1946. Statistics are based on data between 1976 and 2015.

We proceed to discuss the differences between the default and the alternative long-run risks models. In Figure 7, we plot the time series of expected returns of the two models, as well as stock index returns realized over the next year, between 1976 and 2015. As Figure 7 shows, expected returns of the two models are virtually identical across the sample period. Instead, the two models differ in how expected returns are decomposed into risk premium and risk free rates. To show this, we decompose expected returns of each of the two models into model implied risk free rates and model implied risk premium. The derivation of risk free rates and risk premium as a function of state variables and model parameters are detailed in Appendix A.4
Figure 7: **Long-Run Risks Model Implied Expected Returns.** This figure plots expected returns of the stock index implied by each of the two long run risks models specified, as well as the actual stock index returns realized over the next year, for the period between 1976 and 2015. Dividends are estimated using data since 1946.

In Figure 8, we plot risk free rates and risk premium of each of the two models, as well as actual risk free rates and excess returns realized over the next year, for the period between 1976 and 2015. Interestingly, Figure 8 shows that the two models have completely different implications on the decomposition of expected returns into risk free rates and risk premium. That is, according to consumption dynamics in our default model, almost all of the variation in expected returns is attributable to the variation in risk free rates, whereas the risk premium hardly changes over time. To the contrary, according to consumption dynamics in the alternative model, almost all of the variation in expected returns is attributable to the variation in risk premium, whereas risk free rates hardly change over time. Clearly, we know from the data that risk free rates are relatively constant over time. Thus, we can infer that, consumption dynamics in the alternative model is the more realistic one of the two. In other words, because different models of the consumption process can have different implications for the decomposition of expected returns into risk premium and risk free rates, we can use this decomposition to shed light on the true consumption dynamics. However, because modeling consumption is not the focus of this paper, we leave this to potential future research.
5 Conclusion

In this paper, we develop a time series model for dividend growth rates that is inspired by both the latent variable model of Cochrane (2008), van Binsbergen and Koijen (2010), and others and the vector-autoregressive model of Campbell and Shiller (1988b). The model shows strong performance in predicting annual dividend growth rates. We find that some parameters in our dividend model are difficult to estimate with precision in finite sample. As a consequence, learning about dividend model parameters significantly changes investors beliefs about future dividends and the nature of the long run risks in the economy.

We show how to evaluate the economic and statistical significance of learning about parameters in the dividend process in determining asset prices and returns. We argue that a better asset pricing model should forecast returns better. We find that a long run risks model that incorporates learning about dividend dynamics is surprisingly successful in forecasting stock index returns. While the long run risks model, assuming learning, explains 22.4 percent of the variation in annual stock index returns, shutting down learning reduces the R^2 value to 6.4 percent. This drop in R^2 value is statistically significant. Our findings highlight the joint importance of investors aversion to long run risks and investors learning about these risks for understanding asset prices.
References

A Appendix

A.1 Estimation of Parameters in Our Dividend Model

We estimate parameters of the following system of equations that jointly describe the dividend, earnings, and inflation processes (see (6), (9), and (15)).

\[
\begin{align*}
\Delta d_{t+1} - \mu_d &= x_t + \phi(q_t - \mu_q) + \sigma_d \epsilon_{d,t+1}, \\
\Delta e_{t+1} - \mu_d &= x_t + (\theta + \phi - 1)(q_t - \mu_q) + \sigma_d \epsilon_{d,t+1} + \sigma_q \epsilon_{q,t+1}, \\
x_{t+1} &= \rho x_t + \sigma_x \epsilon_{x,t+1}, \\
q_{t+1} - \mu_q &= \theta(q_t - \mu_q) + \sigma_q \epsilon_{q,t+1}, \\
\Delta \pi_{t+1} - \mu_\pi &= \theta(\Delta \pi_t - \mu_\pi) + \sigma_\pi \epsilon_{\pi,t+1}, \\
\epsilon_{d,t+1} \sim \text{i.i.d. } \mathcal{N}(0, \lambda_{dq}), \\
\epsilon_{x,t+1} \sim \text{i.i.d. } \mathcal{N}(0, 1), \\
\epsilon_{q,t+1} \sim \text{i.i.d. } \mathcal{N}(0, \lambda_{dq}), \\
\epsilon_{\pi,t+1} \sim \text{i.i.d. } \mathcal{N}(0, 1).
\end{align*}
\] (45)

For parameters in the fourth equation of (45), we run an autoregression on retention ratios:

\[
q_{t+1} - \alpha_1 = b_1(q_t - \alpha_1) + \nu_{q,t+1}, \quad \nu_{q,t+1} \sim \mathcal{N}(0, \varsigma_q).
\] (46)

For parameters in the fifth equation of (45), we run an autoregression on inflation rates:

\[
\Delta \pi_{t+1} - \alpha_2 = b_2(\Delta \pi_t - \alpha_2) + \nu_{\pi,t+1}, \quad \nu_{\pi,t+1} \sim \mathcal{N}(0, \varsigma_\pi).
\] (47)

For the remaining parameters in the first to third equations and the correlation matrix of (45), we note that dividend growth rates are affected by contemporaneous earnings and vice versa. So we estimate the cointegrated process of dividends and earnings through the following system of equations:

\[
\begin{align*}
\Delta d_{t+1} - \alpha_3 &= y_{t+1} + b_3(\Delta e_{t+1} - \alpha_3) + b_4(q_t - \hat{\alpha}_1) + \nu_{d,t+1} \\
y_{t+1} &= b_5 y_t + \nu_{y,t+1} \\
\epsilon_{d,t+1} &\sim \text{i.i.d. } \mathcal{N}(0, \varsigma_d), \\
\epsilon_{y,t+1} &\sim \text{i.i.d. } \mathcal{N}(0, \varsigma_y).
\end{align*}
\] (48)

To apply the Kalman filter, let \(\hat{y}_{t|s} \) denote the time-\(s \) expectation of the latent variable \(y_t \) and \(P_{t|s} \) denote the variance of \(y_t \) conditioning on information in time-\(s \). Set initial
conditions \(\hat{y}_{0|0} = 0 \) and \(P_{0|0} = \frac{\sigma_y^2}{1-b_3^2} \). We can then iterate the following system of equations:

\[
\begin{align*}
\hat{y}_{t+1|t} &= b_5 \cdot \hat{y}_{t|t}, \\
P_{t+1|t} &= b_5^2 \cdot P_{t|t} + \zeta_y^2, \\
\epsilon_{t+1} &= \Delta d_{t+1} - \alpha_3 - \hat{y}_{t+1|t} - b_3 (\Delta e_{t+1} - \hat{\alpha}_1) - b_4 (q_t - \hat{\alpha}_2), \\
\hat{y}_{t+1|t+1} &= \hat{y}_{t+1|t} - \frac{P_{t+1|t}}{P_{t+1|t} + \zeta_d^2} \cdot \epsilon_{t+1}, \\
P_{t+1|t+1} &= P_{t+1|t} - \frac{P_{t+1|t}^2}{P_{t+1|t} + \zeta_d^2}.
\end{align*}
\] (49)

To estimate parameters in (48) using data up to time-\(\tau \), define the log likelihood function:

\[
\log(\mathcal{L}) = -\sum_{t=0}^{\tau-1} \left(\log \left(P_{t+1|t} + \zeta_d^2 \right) + \frac{\epsilon_{t+1}^2}{P_{t+1|t} + \zeta_d^2} \right).
\] (50)

In our implementation of Kalman filter that, because we use overlapping monthly data, we obtain twelve log likelihoods, one for the 12 month periods that begin in January, one for the 12 month periods that begin in February, etc. We choose model parameters by maximizing the sum of the twelve log likelihood.

Based on estimates from (46), (47), and (48), we compute residual estimates:

\[
\begin{align*}
\hat{\nu}_{d,t+1} &= \Delta d_{t+1} - \hat{\alpha}_3 - \hat{y}_{t+1|t} - \hat{b}_3 (\Delta e_{t+1} - \hat{\alpha}_1) - \hat{b}_4 (q_t - \hat{\alpha}_2), \\
\hat{\nu}_{y,t+1} &= \hat{y}_{t+1|t} - \hat{b}_5 \hat{y}_{t|t-1}, \\
\hat{\nu}_{q,t+1} &= (q_{t+1} - \hat{\alpha}_1) - \hat{b}_1 (q_t - \hat{\alpha}_1), \\
\hat{\nu}_{\pi,t+1} &= (\Delta \pi_{t+1} - \hat{\alpha}_2) - \hat{b}_2 (\Delta \pi_t - \hat{\alpha}_2).
\end{align*}
\] (51)

and use these estimated residuals to estimate covariances among \(\nu_{d,t+1}, \nu_{x,t+1}, \nu_{q,t+1}, \) and \(\nu_{\pi,t+1} \). Last, we note that (47) is our inflation model and we can map (46) and (48) to our dividend model as follows. We can map (46) to the fourth equation of our dividend model. Also, by substituting \(\Delta e_{t+1} = q_{t+1} - q_t + \Delta d_{t+1} \) and (46) into (48), we can re-arrange (48) into a format consistent with the first and second equations of our dividend model:

\[
\begin{align*}
\Delta d_{t+1} - \alpha_3 &= x_t + \frac{b_3 (b_1 - 1) + b_4}{1 - b_3} (q_t - \hat{\alpha}_1) + \frac{b_3}{1 - b_3} \nu_{q,t+1} + \frac{1}{1 - b_3} \nu_{d,t+1}, \\
x_{t+1} &= b_5 x_t + \nu_{x,t+1}, \\
\begin{pmatrix} \nu_{d,t+1} \\ \nu_{x,t+1} \end{pmatrix} &\sim \text{i.i.d. } \mathcal{N} \left(0, \begin{pmatrix} \zeta_d & 0 \\ 0 & \frac{1}{1 - b_3} \zeta_y \end{pmatrix} \right).
\end{align*}
\] (52)

where \(\frac{y_t}{1-b_3} \). So we can convert estimates in (46), (48), (49), and covariance estimates to
estimates of parameters in our dividend model:

\[
\hat{\mu}_d = \hat{\alpha}_3, \quad \hat{\mu}_q = \hat{\alpha}_1, \quad \hat{\phi} = \frac{\hat{b}_3(\hat{b}_1 - 1) + \hat{b}_2}{1 - \hat{b}_3}, \quad \hat{\rho} = \hat{b}_5, \quad \hat{\theta} = \hat{b}_1, \quad \hat{\eta} = \hat{b}_2,
\]

\[
\hat{\sigma}_x = \frac{1}{1 - \hat{b}_3}, \quad \hat{\sigma}_d = \sqrt{\left(\frac{\hat{b}_3}{1 - \hat{b}_3} \right)^2 \hat{\varsigma}_q^2 + \left(\frac{1}{1 - \hat{b}_3} \right)^2 \hat{\varsigma}_d^2 + \frac{2\hat{b}_3}{(1 - \hat{b}_3)^2} \text{cov}(\hat{\nu}_d, \hat{\nu}_q)}, \quad \hat{\varsigma}_q = \hat{\varsigma}_q, \quad \hat{\varsigma}_\pi = \hat{\varsigma}_\pi,
\]

\[
\hat{\lambda}_{d\pi} = \frac{1}{\hat{\sigma}_d \hat{\sigma}_{\pi}} \left(\frac{\hat{b}_3}{1 - \hat{b}_3} \text{cov}(\hat{\nu}_{q,t+1}, \hat{\nu}_{\pi,t+1}) + \frac{1}{1 - \hat{b}_3} \text{cov}(\hat{\nu}_{d,t+1}, \hat{\nu}_{\pi,t+1}) \right), \quad \hat{\lambda}_{dx} = \frac{1}{\hat{\sigma}_x \hat{\sigma}_d} \left(\frac{\hat{b}_3}{1 - \hat{b}_3} \text{cov}(\hat{\nu}_{y,t}, \hat{\nu}_{\pi,t+1}) + \left(\frac{\hat{b}_3}{1 - \hat{b}_3} \right)^2 \text{cov}(\hat{\nu}_{y,t}, \hat{\nu}_{d,t+1}) \right), \quad \hat{\lambda}_{x\pi} = \frac{1}{\hat{\sigma}_x \hat{\sigma}_\pi} \text{cov}(\hat{\nu}_{y,t}, \hat{\nu}_{\pi,t+1}),
\]

\[
\hat{\lambda}_{dq} = \frac{1}{\hat{\sigma}_d \hat{\sigma}_q} \left(\frac{\hat{b}_3}{1 - \hat{b}_3} \hat{\varsigma}_q^2 + \frac{1}{1 - \hat{b}_3} \text{cov}(\hat{\nu}_{d,t+1}, \hat{\nu}_{q,t+1}) \right), \quad \hat{\lambda}_{q\pi} = \frac{1}{\hat{\sigma}_q \hat{\sigma}_\pi} \frac{\hat{b}_3}{1 - \hat{b}_3} \text{cov}(\hat{\nu}_{q,t+1}, \hat{\nu}_{y,t}). \quad (53)
\]

A.2 Bootstrap Simulation

Each simulation is based on 100,000 iterations. First, we simulate innovations to dividend growth rates and retention ratios:

\[
\begin{pmatrix}
\epsilon_{d,t+1} \\
\epsilon_{x,t+1} \\
\epsilon_{q,t+1}
\end{pmatrix}
\sim \text{i.i.d. } \mathcal{N}
\begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix},
\begin{pmatrix}
1 & 0 & \lambda_{dq} \\
0 & 1 & 0 \\
\lambda_{dq} & 0 & 1
\end{pmatrix}.
\quad (54)
\]

Dividend model parameters used for simulations are those reported in Table 2, which are estimated based on the full data sample between 1946 and 2015. From these innovations, we can simulate the latent variable \(x_t \) and retention ratios iteratively as:

\[
x_{t+1} = \rho x_t + \sigma_x \epsilon_{x,t+1},
\]

\[
q_{t+1} - \mu_q = \theta (q_t - \mu_q) + \sigma_q \epsilon_{q,t+1}. \quad (55)
\]

Given the simulated time series of the latent variable \(x_t \) and retention ratios, we can simulate dividend growth rates iteratively as:

\[
\Delta d_{t+1} - \mu_d = x_t + \phi (q_t - \mu_q) + \sigma_d \epsilon_{d,t+1},
\]

\[
\Delta e_{t+1} = q_{t+1} - q_t + \Delta d_{t+1}. \quad (56)
\]

47
A.3 Proof of Proposition 1

Let \mathcal{M}_0 be the true asset pricing model and let \mathcal{M}_i and \mathcal{M}_j be two candidate models. Define $\epsilon_{t+1} = R_{t+1} - E_t[R_{t+1}|\mathcal{M}_0]$. We can write:

\[
E \left[(E_t[R_{t+1}|\mathcal{M}_0] - E_t[R_{t+1}|\mathcal{M}_i])^2 \right] = E \left[(R_{t+1} - E_t[R_{t+1}|\mathcal{M}_i])^2 + E [\epsilon_{t+1}^2] - 2 \cdot E [(R_{t+1} - E_t[R_{t+1}|\mathcal{M}_i]) \epsilon_{t+1}] \right]
\]

\[
= E \left[(R_{t+1} - E_t[R_{t+1}|\mathcal{M}_i])^2 + E [\epsilon_{t+1}^2] + 2 \cdot E [(E_t[R_{t+1}|\mathcal{M}_i] \epsilon_{t+1}] - 2 \cdot E [R_{t+1} \epsilon_{t+1}] \right]
\]

Last equality assumes frictionless and efficient market and investors having rational expectations. As a result, marginal investor’s investment decisions are based on all information available and so ϵ_{t+1} is orthogonal to any variable that is time-t measurable. $E [\epsilon_{t+1}^2]$ and $E [R_{t+1} \epsilon_{t+1}]$ are independent of the model \mathcal{M}_i and so:

\[
E \left[(E_t[R_{t+1}|\mathcal{M}_0] - E_t[R_{t+1}|\mathcal{M}_i])^2 \right] < E \left[(E_t[R_{t+1}|\mathcal{M}_0] - E_t[R_{t+1}|\mathcal{M}_j])^2 \right]
\]

\[
\Leftrightarrow 1 - \frac{E [R_{t+1} - E_t[R_{t+1}|\mathcal{M}_i])^2]}{E [R_{t+1} - E[R_{t+1}]^2]} > 1 - \frac{E [R_{t+1} - E_t[R_{t+1}|\mathcal{M}_j])^2]}{E [R_{t+1} - E[R_{t+1}]^2]} .
\]

A.4 Derivation of Price-Dividend Ratios and Expected Returns in Long-Run Risks Models

A.4.1 The Default Model

We derive price-to-dividend ratios and expected returns implied by our long-run risk model, which features dividend dynamics in (3), consumption dynamics in (27) and (28), and investors preferences in (25). Our derivation closely follows the steps in Bansal and Yaron (2004). The log stochastic discount factor is given as:

\[
m_{t+1} = \zeta \log(\delta) - \frac{\zeta}{\psi} \Delta \tilde{c}_{t+1} + (\zeta - 1) \tilde{R}_{t+1} .
\]

where $\zeta = \frac{1-\alpha}{1-\psi}$, α is risk aversion, and ψ is the elasticity of intertemporal substitution. Let $z_{c,t}$ be the log wealth-to-consumption ratio, by first order Taylor series approximation,
log real return of the representative agent’s wealth portfolio can be written as:

\[\tilde{R}_{t+1}^c = g_0 + g_1 z_{c,t+1} - z_{c,t} + \Delta \hat{c}_{t+1}. \]

(58)

The log-linearizing constants are:

\[g_0 = \log(1 + \exp(\bar{z}_c)) - g_1(\bar{z}_c) \]
\[g_1 = \frac{\exp(\bar{z}_c)}{1 + \exp(\bar{z}_c)} \]

Assume that log wealth-to-consumption ratio is of the form:

\[z_{c,t} = A_{c,0} + A_{c,1} x_t + A_{c,2} \sigma_x^2. \]

(59)

Let \(\mu_c = \mu_d - \mu_\pi \). Then we can write:

\[
E_t \left(m_{t+1} + \tilde{R}_{t+1}^c \right) = \zeta \log(\delta) + \left(\frac{\zeta}{\psi} \right) \left(\mu_c + \frac{1}{\gamma} x_t \right) + \zeta g_0 + \zeta (g_1 - 1) A_{c,0} + \zeta (g_1 \rho - 1) A_{c,1} x_t \\
+ \zeta (g_1 \omega - 1) A_{c,2} \sigma_x^2 + \zeta g_1 (1 - \omega) A_{c,2} \sigma_c^2,
\]

\[
\text{var} \left(m_{t+1} + \tilde{R}_{t+1}^c \right) = \zeta^2 \left(1 - \frac{1}{\psi} \right)^2 \sigma_x^2 + \zeta^2 (g_1 A_{c,1} \sigma_x)^2 + \zeta^2 (g_1 A_{c,2} \sigma_c)^2.
\]

(60)

Based on the condition \(E_t[\exp(m_{t+1} + \tilde{R}_{t+1}^c)] = 1 \), we can solve for \(A_{c,0} \), \(A_{c,1} \), and \(A_{c,2} \) as:

\[A_{c,0} = \frac{\log(\delta) + (1 - \frac{1}{\psi})(\mu_d - \mu_\pi) + g_0 + g_1 A_{c,2}(1 - \omega)\sigma_x^2 + \frac{1}{2} \zeta g_1^2 (A_{c,1} \sigma_x^2 + A_{c,2} \sigma_c^2)}{1 - g_1} \]
\[A_{c,1} = \frac{\left(1 - \frac{1}{\psi} \right)^{\frac{1}{2}}}{1 - g_1 \rho}, \quad A_{c,2} = \frac{\zeta (1 - \frac{1}{\psi})^2}{2(1 - g_1 \omega)}. \]

(61)

Next, let \(z_{d,t} \) be log price-to-dividend ratio of the stock index and \(\tilde{R}_{t+1} \) be log stock index real return. Then, by first order Taylor series approximation, we can write:

\[\tilde{R}_{t+1} = \kappa_0 + \kappa_1 z_{d,t+1} - z_{d,t} + \Delta \tilde{d}_{t+1}. \]

(62)

where \(\Delta \tilde{d}_{t+1} \) is real dividend growth rate.

Assume that log price-to-dividend ratio is of the form:

\[z_{d,t} = A_{d,0} + A_{d,1} x_t + A_{d,2} \sigma_x^2 + A_{d,3} (q_t - \mu_q) + A_{d,4} (\Delta \pi_t - \mu_\pi). \]

(63)
Then note that:

\[E_t \left[m_{t+1} + \tilde{R}_{t+1} \right] = \zeta \log(\delta) + (\zeta - 1) (g_1 - 1) A_{c,0} + (\zeta - 1) (g_1 \rho - 1) A_{c,1} x_t + (\zeta - 1) (g_1 \omega - 1) A_{c,2} \sigma_t^2 \\
+ (\zeta - 1) g_1 (1 - \omega) A_{d,2} \sigma_c^2 + \left(\zeta - \frac{C}{\theta} - 1 \right) \left(\mu_c + \frac{1}{\gamma} x_t \right) + (\zeta - 1) g_0 + \kappa_0 + (\kappa_1 - 1) A_{d,0} \\
+ (\kappa_1 \rho - 1) A_{d,1} x_t + (\kappa_1 \omega - 1) A_{d,2} \sigma_t^2 + \kappa_1 (1 - \omega) A_{d,2} \sigma_c^2 + (\kappa_1 \theta - 1) A_{d,3} (q_t - \mu_q) \\
+ (\kappa_1 \eta - 1) A_{d,4} (\Delta \pi_t - \mu_\pi) + \mu_c + x_t + \phi (q_t - \mu_q) - \eta (\Delta \pi_t - \mu_\pi), \]

\[\text{var}_t \left(m_{t+1} + \tilde{R}_{t+1} \right) = \left(\zeta - 1 - \frac{C}{\theta} \right) \sigma_t^2 + \sigma_\pi^2 + \left((\zeta - 1) g_1 A_{c,1} + \kappa_1 A_{d,1} \right)^2 \sigma_x^2 \\
+ \left((\zeta - 1) g_1 A_{c,2} + \kappa_1 A_{d,2} \right)^2 \sigma_c^2 + (\kappa_1 A_{d,3})^2 \sigma_q^2 \\
+ (\kappa_1 A_{d,4})^2 \sigma_\pi^2 + 2(\kappa_1 A_{d,3}) \sigma_d \sigma_\pi \lambda_d. \] (64)

Based on the condition \(E_t[\exp(m_{t+1} + \tilde{R}_{t+1})] = 1 \), we can solve for \(A_{d,0}, A_{d,1}, A_{d,2}, \) and \(A_{d,3} \) as:

\[A_{d,0} = \frac{\left(\zeta \log(\delta) + (\zeta - 1) g_0 + (\zeta - 1) (g_1 - 1) A_{c,0} + ((\zeta - 1) g_1 A_{c,2} + \kappa_1 A_{d,2}) (1 - \omega) \sigma_c^2 \right) + \left(\zeta - \frac{C}{\theta} - 1 \right) \mu_c + \kappa_0 + \mu_c}{1 - \kappa_1}, \]

\[A_{d,1} = \frac{\left(\zeta - 1 - \frac{C}{\theta} \right) \frac{1}{\gamma} + (\zeta - 1) (g_1 \rho - 1) A_{c,1} + 1}{1 - \kappa_1 \rho}, \]

\[A_{d,2} = \frac{(\zeta - 1) (g_1 \omega - 1) A_{c,2} + \frac{1}{2} \left(\zeta - 1 - \frac{C}{\theta} \right)^2}{1 - \kappa_1 \omega}, \]

\[A_{d,3} = \frac{\phi}{1 - \kappa_1 \theta}, \quad A_{d,4} = \frac{-\eta}{1 - \kappa_1 \eta}. \] (65)

Substituting the expression for \(z_{d,t} \) into \(\tilde{R}_{t+1} = \kappa_0 + \kappa_1 z_{d,t+1} - z_{d,t} + \Delta \tilde{d}_{t+1} \) leads:

\[E_t[\tilde{R}_{t+1}] = A_{r,0} + A_{r,1} x_t + A_{r,2} \sigma_t^2 + A_{r,3} (q_t - \mu_q) + A_{r,4} (\Delta \pi_t - \mu_\pi), \] (66)

where:

\[A_{r,0} = \kappa_0 - (1 - \kappa_1) A_{d,0} + (\mu_c + \mu_\pi) + \kappa_1 (1 - \omega) A_{d,2} \sigma_c^2, \quad A_{r,1} = 1 - (1 - \kappa_1 \rho) A_{d,1}, \]

\[A_{r,2} = -(1 - \kappa_1 \omega) A_{d,2}, \quad A_{r,3} = \phi - (1 - \kappa_1 \theta) A_{d,3}, \quad A_{r,4} = -\eta - (1 - \kappa_1 \eta) A_{d,4}. \] (67)
Expected real return over the next τ period is:

$$
\sum_{s=0}^{\tau-1} \tilde{R}_{t+s+1} = \tau A_{r,0} + \left(\sum_{s=0}^{\tau-1} A_{r,1} \rho^s \right) x_t + \left(\sum_{s=0}^{\tau-1} A_{r,2} \omega^s \right) \sigma^2_t + \left(\sum_{s=0}^{\tau-1} A_{r,2} (1 - \omega^s) \right) \sigma^2_c
$$

$$
+ \left(\sum_{s=0}^{\tau-1} A_{r,3} \theta^s \right) (q_t - \mu_q) + \left(\sum_{s=0}^{\tau-1} A_{r,4} \eta^s \right) (\Delta \pi_t - \mu_\pi).
$$

For nominal returns, add expected inflation. Finally, the real risk free rate can be written as:

$$
R_{f,t+1} = A_{f,0} + A_{f,1} x_t + A_{f,2} \sigma^2_t,
$$

where:

$$
A_{f,0} = -\zeta \log(\delta) - (\zeta - 1 - \frac{\zeta}{\psi}) \mu_c - (\zeta - 1) \left(g_0 + (g_1 - 1) A_{c,0} + g_1 (1 - \omega) A_{c,2} \sigma^2_c \right)
$$

$$
- \frac{1}{2} ((\zeta - 1) g_1 A_{c,1})^2 \sigma^2_x - \frac{1}{2} ((\zeta - 1) g_1 A_{c,2} \sigma_x)^2.
$$

$$
A_{f,1} = -((\zeta - 1 - \frac{\zeta}{\psi}) \gamma + (\zeta - 1) (1 - g_1 \rho) A_{c,1}, A_{f,2} = (\zeta - 1) (1 - g_1 \omega) A_{c,2} - \frac{1}{2} (\zeta - 1 - \frac{\zeta}{\psi})^2.
$$

A.4.2 The Alternative Model

We derive price-to-dividend ratios and expected returns implied by our long-run risk model, which features dividend dynamics in (3), consumption dynamics in (40), and investors preferences in (25). The difference between the alternative model from the default model is that, while the default model assumes consumption growth rates to have stochastic volatility, the alternative model assumes consumption volatility to be constant. Instead, the alternative model assumes that the correlation between shocks to consumption and shocks to dividend and earnings growth rates are time varying. Nevertheless, our derivation closely follows the steps in Bansal and Yaron (2004). The log stochastic discount factor is given as:

$$
m_{t+1} = \zeta \log(\delta) - \frac{\zeta}{\psi} \Delta \tilde{c}_{t+1} + (\zeta - 1) \tilde{R}_{t+1}^c.
$$
Let \(z_{c,t} \) be the log wealth-to-consumption ratio, by first order Taylor series approximation, log real return of the representative agent’s wealth portfolio can be written as:

\[
\tilde{R}_{t+1}^c = g_0 + g_1 z_{c,t+1} - z_{c,t} + \Delta \tilde{c}_{t+1}.
\]

(72)

The log-linearizing constants are:

\[
g_0 = \log(1 + \exp(\bar{z}_c)) - g_1(\bar{z}_c) \quad \text{and} \quad g_1 = \frac{\exp(\bar{z}_c)}{1 + \exp(\bar{z}_c)}.
\]

Assume that log wealth-to-consumption ratio is of the form:

\[
z_{c,t} = A_{c,0} + A_{c,1} x_t.
\]

(73)

Let \(\mu_c = \mu_d - \mu_\pi \). Then we can write:

\[
E_t \left[m_{t+1} + \tilde{R}_{t+1}^c \right] = \zeta \log(\delta) + \left(\zeta - \frac{\zeta}{\psi} \right) \left(\mu_c + \gamma x_t \right) + \zeta g_0 + \zeta (g_1 - 1) A_{c,0} + \zeta (g_1 \rho - 1) A_{c,1} x_t,
\]

\[
\text{var}_t \left(m_{t+1} + \tilde{R}_{t+1}^c \right) = \zeta^2 \left(1 - \frac{1}{\psi} \right)^2 \sigma_c^2 + \zeta^2 \left(g_1 A_{c,1} \right)^2 \sigma_x^2.
\]

(74)

Based on \(E_t[\exp(m_{t+1} + \tilde{R}_{t+1}^c)] = 1 \), we can solve for coefficients \(A_{c,0}, A_{c,1}, \) and \(A_{c,2} \) as:

\[
A_{c,0} = \frac{\log(\delta) + (1 - \frac{1}{\psi}) \mu_c + g_0 + \frac{1}{2} \zeta (1 - \frac{1}{\psi})^2 \sigma_c^2 + \frac{1}{2} \zeta (g_1 A_{c,1})^2 \sigma_x^2}{1 - g_1},
\]

\[
A_{c,1} = \frac{1 - \frac{1}{\psi}}{1 - g_1 \rho}.
\]

(75)

Next, let \(z_{d,t} \) be log price-to-dividend ratio of the stock index and \(\tilde{R}_{t+1} \) be log real stock index return. Then, by first order Taylor series approximation, we can write:

\[
\tilde{R}_{t+1} = \kappa_0 + \kappa_1 z_{d,t+1} - z_{d,t} + \Delta \tilde{d}_{t+1}.
\]

(76)

where \(\Delta \tilde{d}_{t+1} \) is real dividend growth rate.

Assume that log price-to-dividend ratio is of the form:

\[
z_{d,t} = A_{d,0} + A_{d,1} x_t + A_{d,2} \lambda_t + A_{d,3}(q_t - \mu_q) + A_{d,4}(\Delta \pi_t - \mu_\pi).
\]

(77)
Then note that:

\[
E_t \left[m_{t+1} + \tilde{R}_{t+1} \right] = \zeta \log(\delta) + (\zeta - 1) (g_1 - 1) A_{c,0} + (\zeta - 1) (g_1 \rho - 1) A_{c,1} x_t \\
+ \left(\zeta - \frac{\zeta}{\psi} - 1 \right) (\mu_c + \gamma x_t) + (\zeta - 1) g_0 + \kappa_0 + (\kappa_1 - 1) A_{d,0} + (\kappa_1 \rho - 1) A_{d,1} x_t \\
+ (\kappa_1 \omega - 1) A_{d,2} \lambda_t + (\kappa_1 \theta - 1) A_{d,3} (q_t - \mu_q) + (\kappa_1 \eta - 1) A_{d,4} (\Delta \pi_t - \mu_\pi) \\
+ \mu_c + x_t + \phi \left(q_t - \mu_q \right) - \eta (\Delta \pi_t - \mu_\pi).
\]

\[
\text{var}_t \left(m_{t+1} + \tilde{R}_{t+1} \right) = \left(\zeta - 1 - \frac{\zeta}{\psi} \right)^2 \sigma_c^2 + \sigma_a^2 + (\zeta - 1) g_1 A_{c,1} + \kappa_1 A_{d,1})^2 \sigma_x^2 \\
+ (\kappa_1 A_{d,2})^2 \sigma_a^2 + \kappa_1 A_{d,3})^2 \sigma_q^2 + (\kappa_1 A_{d,4} - 1)^2 \sigma_\pi^2 \\
+ 2 \left(\zeta - 1 - \frac{\zeta}{\psi} \right) \sigma_c \sigma_d \lambda_t + 2 (\kappa_1 A_{d,3}) \sigma_d \sigma_q \lambda_{dq} \\
+ 2 \left(\zeta - 1 - \frac{\zeta}{\psi} \right) (\kappa_1 A_{d,3}) \left(\sqrt{\sigma_d^2 + \sigma_q^2 + 2 \sigma_d \sigma_q \lambda_{dq} - \sigma_d} \right) \sigma_c \lambda_t.
\] (78)

Based on \(E_t[\exp(m_{t+1} + \tilde{R}_{t+1})] = 1 \), we can solve for \(A_{d,0}, A_{d,1}, A_{d,2}, A_{d,3}, \) and \(A_{d,4} \) as:

\[
A_{d,0} = \frac{\zeta \log(\delta) + (\zeta - 1) g_0 + (\zeta - 1) g_1 A_{c,1} + 1 - \kappa_1}{1 - \kappa_1},
\]

\[
A_{d,1} = \frac{\left(\zeta - 1 - \frac{\zeta}{\psi} \right) \lambda_t + (\zeta - 1) (g_1 \rho - 1) A_{c,1} + 1}{1 - \kappa_1 \rho},
\]

\[
A_{d,2} = \frac{\left(\zeta - 1 - \frac{\zeta}{\psi} \right) (\kappa_1 A_{d,3}) \left(\sqrt{\sigma_d^2 + \sigma_q^2 + 2 \sigma_d \sigma_q \lambda_{dq} - \sigma_d} \right) \sigma_c}{1 - \kappa_1 \omega},
\]

\[
A_{d,3} = \frac{\phi}{1 - \kappa_1 \theta}, \quad A_{d,4} = \frac{-\eta}{1 - \kappa_1 \eta}.
\] (79)

Substituting the expression for \(z_{d,t} \) into \(\tilde{R}_{t+1} = \kappa_0 + \kappa_1 z_{d,t+1} - z_{d,t} + \Delta \tilde{d}_{t+1} \) leads to:

\[
E_t[\tilde{R}_{t+1}] = A_{r,0} + A_{r,1} x_t + A_{r,2} \lambda_t + A_{r,3} (q_t - \mu_q) + A_{r,4} (\Delta \pi_t - \mu_\pi),
\] (80)

where:

\[
A_{r,0} = \kappa_0 - (1 - \kappa_1) A_{d,0} + \mu_d, \quad A_{r,1} = 1 - (1 - \kappa_1 \rho) A_{d,1},
\]

\[
A_{r,2} = - (1 - \kappa_1 \omega) A_{d,2}, \quad A_{r,3} = \phi - (1 - \kappa_1 \theta) A_{d,3}, \quad A_{r,4} = -\eta - (1 - \kappa_1 \eta) A_{d,4}.
\] (81)

53
Expected real return over the next τ period is:

$$
\sum_{s=0}^{\tau-1} \tilde{R}_{t+s+1} = \tau A_{r,0} + \left(\sum_{s=0}^{\tau-1} A_{r,1}\rho^s \right) x_t + \left(\sum_{s=0}^{\tau-1} A_{r,2}\omega^s \right) \lambda_t + \left(\sum_{s=0}^{\tau-1} A_{r,3}\theta^s \right) (q_t - \mu_q) \\
+ \left(\sum_{s=0}^{\tau-1} A_{r,4}\eta^s \right) (\Delta \pi_t - \mu_{\pi})
$$

(82)

For nominal returns, add expected inflation. Finally, real risk free rates can be written as:

$$
\tilde{R}_{f,t+1} = A_{f,0} + A_{f,1}x_t,
$$

(83)

where:

$$
A_{f,0} = -\zeta \log(\delta) - (\zeta - 1 - \frac{\zeta}{\psi}) \mu_c - (\zeta - 1) (g_0 + (g_1 - 1)A_{c,0}) - \frac{1}{2} \left(\zeta - 1 - \frac{\zeta}{\psi} \right)^2 \sigma_c^2 \\
- \frac{1}{2} ((\zeta - 1)g_1A_{c,1})^2 \sigma_x^2.
$$

$$
A_{f,1} = - (\zeta - 1 - \frac{\zeta}{\psi}) \frac{1}{\gamma} + (\zeta - 1)(1 - g_1\rho)A_{c,1}.
$$

(84)
1 Estimating Dividend Dynamics using a Rolling Window of Dividend Data

We show that estimating dividend model parameters based on an expanding window of past data performs better than estimating those parameters based on a rolling window of past data, for the purposes of forecasting both future dividends and stock index returns. Expanding window estimation refers to estimating model parameters based on all past data since 1946. Rolling window estimation refers to estimating those parameters based on data over the last h years. For this analysis, we set h to 10, 20, or 30 years.

In Table 1, we report our model’s performance in predicting annual dividend growth rates when a rolling window is used to estimate model parameters. We measure performance using out-of-sample R^2 value. For a dividend model \mathcal{M}_t, the out-of-sample R^2 value is defined as:

$$R^2(\mathcal{M}_t) = 1 - \frac{\frac{1}{T-T_0+1} \sum_{t=T_0}^{T-1} (R_{t+1} - E_t [\Delta d_{t+1}|\mathcal{M}_t])^2}{\frac{1}{T-T_0+1} \sum_{i=T_0}^{T-1} (R_{t+1} - \hat{\mu}_{d,t})^2},$$

(1)

We see that, when parameters are estimated using a rolling-window, our model predicts between 22.0 percent and 33.2 percent of the variation in annual dividend growth rates between 1976 and 2015 out-of-sample. These statistics are lower than the forecasting performance of our model when parameters are estimated using an expanding window, which is 33.4 percent over the same time horizon. Further, we note that, among these rolling window results, forecasting performance is strictly increasing in the number of years used in the rolling window. Statistics for predicting real rates are reported in the second row of Table 1. We see that the patterns are identical.

2 Results for Expanded Data Sample (1930-2015)

Throughout this paper, our analysis is based on data between 1946 and 2015. Here, we extend our data sample to after the Great Depression, i.e. between 1930 and 2015. Out-of-sample prediction is still for the period between 1976 and 2015 for easy comparison with results reported elsewhere.

In the first and second columns of Table 2, we report R^2 value for predicting annual dividend growth rates under the expanded data sample. Also reported are the
<table>
<thead>
<tr>
<th></th>
<th>10 Years</th>
<th>20 Years</th>
<th>30 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Rates</td>
<td>0.220</td>
<td>0.300</td>
<td>0.332</td>
</tr>
<tr>
<td></td>
<td>[0.003]</td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Real Rates</td>
<td>0.225</td>
<td>0.288</td>
<td>0.320</td>
</tr>
<tr>
<td></td>
<td>[0.003]</td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
</tbody>
</table>

Table 1: Dividend Growth Rates and Expected Growth Rates (Rolling Window Estimation). This table reports out-of-sample R^2-square value for predicting annual nominal dividend growth rates using our dividend model. Also reported in square parentice is the corresponding p-value from the adjusted-MSPE statistics of Clark and West (2007). Statistics are based on data between 1975 and 2013. Dividend model parameters are estimated based on a rolling window of past 10, 20, or 30 years of data.

Forecasting performance of each of the three baseline models. Results show that our model predicts 26.1 percent of the variation in annual dividend growth rates between 1975 and 2016 out-of-sample, compared to 14.5 percent, 20.3 percent, and -0.02 percent from the baseline models. The third and fourth columns of Table 2 reports statistics for predicting real rates. We see that our model also outperforms the alternative models in predicting the variations in annual real dividend growth rates.

<table>
<thead>
<tr>
<th></th>
<th>Nominal Rates</th>
<th>Real Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>p-value</td>
</tr>
<tr>
<td>J&L</td>
<td>0.261</td>
<td>0.001</td>
</tr>
<tr>
<td>Baseline 1</td>
<td>0.145</td>
<td>0.018</td>
</tr>
<tr>
<td>Baseline 2</td>
<td>0.203</td>
<td>0.004</td>
</tr>
<tr>
<td>Baseline 3</td>
<td>-0.024</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 2: Dividend Growth Rates and Expected Growth Rates (Expanded Data Sample). The first and second columns of this table reports out-of-sample R^2 value for predicting annual nominal dividend growth rates using our dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. Baseline 1), the dividend model in Campbell and Shiller (1988b) (i.e. Baseline 2), or a Markov-switching model (i.e. Baseline 3), and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). The third and fourth columns are for predicting real rates. Dividends are estimated using data since 1930. Statistics are based on data between 1976 and 2015.

In Table 3, we report R-square value for predicting annual stock index returns using our long-run risks model and the expanded data sample, both assuming learning and
assuming full information. We see that our learning model predicts 18.9 percent of the variation in annual stock index returns between 1976 and 2015 out-of-sample and more than half of this forecasting performance can be directly attributed to learning about dividend dynamics. Overall, these results and those reported in the paper are very similar.

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Model</td>
<td>0.189</td>
<td>0.005</td>
</tr>
<tr>
<td>Full Information Model</td>
<td>0.043</td>
<td>0.203</td>
</tr>
<tr>
<td>Incremental</td>
<td>0.152</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Table 3: Stock Index Returns and the Long-Run Risks Model (Expanded Data Sample). This table reports out-of-sample R-square value for predicting stock index returns over the next year using our long run risks model, assuming investors either learn, or do not learn, about dividend model parameters, and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Also reported is incremental out-of-sample R-square value, which captures the incremental contribution of learning to the forecasting performance. Dividends are estimated using data since 1930. Statistics are based on data between 1976 and 2015.

3 Modeling Inflation Rates as an AR[1]

To determine what is the most appropriate model to use for the inflation process, we plot the autocorrelation function (ACF) and partial autocorrelation function (PACF) of annual inflation rates based on data between 1946 and 2015. The ACF plots the correlation between inflation rates of different lags up-to 10 years, and the PACF plots their partial correlation: the amount of correlation between inflation rate and its lag that is not explained by correlations at all lower-order-lags. The ACF is on the left of Figure 1 and the PACF is on the right of Figure 1.

We observe that the serial correlations in inflation rates decay slowly and gradually over time. In fact, serial correlations in inflation rates are significant up to 6 years and we do not observe a cutoff point after which the serial correlations sharply drop. This suggests that inflation rates follow an AR(p) rather than MA(q) process. Next, we observe that the partial serial correlations in inflation rates are only significant on the first lag, and drop sharply after the first lag to insignificance. This further narrows down the right model for inflation rates to an AR[1].
4 Results for Lagging Dividend and Earnings Growth Rates by an Additional 3 Months

Throughout this paper, we assume that investors receive information on corporate earnings 3 months after fiscal quarter or year end, and receive information on dividends immediately after dividends are paid. The choice of lagging earnings by 3 months is based on Securities and Exchange Commission (SEC) rules since 1934 that require public companies to file 10-Q reports no later than 45 days after fiscal quarter end and 10-K reports no later than 90 days after fiscal year end. To show that our results are reasonably robust to this assumption on when investors receive earnings and dividend data, we further lag both earnings and dividend growth rates by 3 months in estimating dividend model parameters. That is, earnings data are lagged by a total of 6 months and dividend data are lagged by 3 months. Then, in Table 4, we report the performance of our long-run risks model in predicting annual stock index returns under this new assumption.

Results show that the deterioration in performance that is the result of lagging data by an additional 3 months is modest. These results are expected. This is because we expect investors to use the most up-to-date data in forming their expectations, so the more lag
we impose on our data, the more our model deviates from the actual information set of
investors, and the further our model’s forecasting performance should deteriorate.

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Model</td>
<td>0.192</td>
<td>0.005</td>
</tr>
<tr>
<td>Full Information Model</td>
<td>0.064</td>
<td>0.118</td>
</tr>
<tr>
<td>Incremental</td>
<td>0.136</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Table 4: **Stock Index Returns and the Long-Run Risks Model (Lagging Dividend and Earnings Growth Rates by an Additional 3 Months)**. This table reports out-of-sample R-square value for predicting annual stock index returns using our long-run risks model, either assuming learning or assuming full information, and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Also reported is incremental out-of-sample R-square value, which captures the incremental contribution of learning to the forecasting performance. Dividends are estimated using data since 1946. Statistics are based on data between 1976 and 2015.

5 Results with Inflation Rates as I.I.D.

In this section, we examine the performance of our long-run risks model under the assumption that inflation rates are i.i.d. and that investors have full knowledge about parameters governing the inflation process, namely its steady-state mean and variance. This shows that our results in the paper are not driven by the AR[1] inflation model used, or the assumption of investors learning about the inflation model. Instead, all of the forecasting performance is attributable to investors learning about dividend dynamics irrespective of inflation.

In Table 5, we report the R-square value for predicting annual stock index returns using our long-run risks model, where instead of assuming inflation rates to follow AR[1], we assume they are i.i.d. with an annualized mean of 0.03 and volatility of 0.05. We see that our model, with i.i.d. inflation rates, predicts 22.6 percent of the variation in annual stock index returns, assuming learning, and 6.4 percent of the same variation, assuming full information, between 1976 and 2015. That is, the forecasting performance of our model varies little and remains robust, either assuming learning about dividend dynamics or assuming full information, as our choice of the inflation model varies.
Table 5: **Stock Index Returns and the Long-Run Risks Model (Inflation Rates as I.I.D.)**. This table reports out-of-sample R^2-square value for predicting stock index returns over the next year using our long run risks model, assuming investors either learn, or do not learn, about dividend model parameters, and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Also reported is incremental out-of-sample R^2-square value, which captures the incremental contribution of learning to the forecasting performance. Dividends are estimated using data since 1946. Statistics are based on data between 1976 and 2015.

<table>
<thead>
<tr>
<th>Model</th>
<th>R^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Model</td>
<td>0.226</td>
<td>0.002</td>
</tr>
<tr>
<td>Full Information Model</td>
<td>0.064</td>
<td>0.118</td>
</tr>
<tr>
<td>Incremental</td>
<td>0.172</td>
<td>0.008</td>
</tr>
</tbody>
</table>

6 Predicting Stock Index Returns over the Next 3 Months to 60 Months

We study how our long-run risks model and stock yields, assuming learning about dividend dynamics, perform in predicting stock index returns over the next 3, 6, 12, 24, 36, and 60 months out-of-sample. We measure performance using out-of-sample R^2-square value. For our learning model, this is defined as:

$$ R^2(L) = 1 - \frac{\sum_{t=\tau_0 + 1}^{T} (R_{t+1} - E_t[R_{t+1}|L])^2}{\sum_{t=\tau_0 + 1}^{T} (R_{t+1} - \hat{\mu}_r,t)^2}, \quad (2) $$

where $E_t[R_{t+1}|L]$ is expected return of our learning model. For stock yields, this is defined as:

$$ R^2(L) = 1 - \frac{\sum_{t=\tau_0 + 1}^{T} (R_{t+1} - sy_t(L))^2}{\sum_{t=\tau_0 + 1}^{T} (R_{t+1} - \hat{\mu}_r,t)^2}, \quad (3) $$

where $sy_t(L)$ is stock yields, assuming learning. Statistics are reported in Table 6. We note that our long-run risks model consistently outperforms stock yields in predicting stock index returns over the next 3 months to 5 years out-of-sample. Our long-run risks model’s outperformance over stock yields is especially pronounced for predicting stock index returns over the next 3 months, and decays as the horizon of return increases. This is consistent with the fact that, by construction, stock yields is the theoretical optimal forecast of long-run stock index returns and by construction long-run expected returns
derived from an asset pricing model eventually converge to stock yields.

<table>
<thead>
<tr>
<th></th>
<th>Long-Run Risks Model</th>
<th>Stock Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>p-value</td>
</tr>
<tr>
<td>3 Months</td>
<td>0.014</td>
<td>0.137</td>
</tr>
<tr>
<td>6 Months</td>
<td>0.031</td>
<td>0.123</td>
</tr>
<tr>
<td>12 Months</td>
<td>0.061</td>
<td>0.129</td>
</tr>
<tr>
<td>24 Months</td>
<td>0.088</td>
<td>0.087</td>
</tr>
<tr>
<td>36 Months</td>
<td>0.117</td>
<td>0.249</td>
</tr>
<tr>
<td>60 Months</td>
<td>0.200</td>
<td>0.264</td>
</tr>
</tbody>
</table>

Table 6: **Stock Index Returns (3 Months to 60 Months) and the Long-Run Risks Model.** This table reports out-of-sample R-square value for predicting stock index returns over the next 3, 6, 12, 24, 36, and 60 months, using either our long run risks model or stock yields, assuming learning, and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Dividends are estimated using data since 1946. Statistics are based on data between 1976 and 2015.
References

